这是本节的多页打印视图。
点击此处打印.
返回本页常规视图.
集群管理
关于创建和管理 Kubernetes 集群的底层细节。
集群管理概述面向任何创建和管理 Kubernetes 集群的读者人群。
我们假设你大概了解一些核心的 Kubernetes 概念。
规划集群
查阅安装中的指导,获取如何规划、建立以及配置 Kubernetes
集群的示例。本文所列的文章称为发行版。
说明:并非所有发行版都是被积极维护的。
请选择使用最近 Kubernetes 版本测试过的发行版。
在选择一个指南前,有一些因素需要考虑:
- 你是打算在你的计算机上尝试 Kubernetes,还是要构建一个高可用的多节点集群?
请选择最适合你需求的发行版。
- 你正在使用类似 Google Kubernetes Engine
这样的被托管的 Kubernetes 集群, 还是管理你自己的集群?
- 你的集群是在本地还是云(IaaS) 上?Kubernetes 不能直接支持混合集群。
作为代替,你可以建立多个集群。
- 如果你在本地配置 Kubernetes,
需要考虑哪种网络模型最适合。
- 你的 Kubernetes 在裸机上还是虚拟机(VM) 上运行?
- 你是想运行一个集群,还是打算参与开发 Kubernetes 项目代码?
如果是后者,请选择一个处于开发状态的发行版。
某些发行版只提供二进制发布版,但提供更多的选择。
- 让你自己熟悉运行一个集群所需的组件。
管理集群
保护集群
保护 kubelet
可选集群服务
- DNS 集成描述了如何将一个 DNS
名解析到一个 Kubernetes service。
- 记录和监控集群活动阐述了 Kubernetes
的日志如何工作以及怎样实现。
2 - 管理资源
你已经部署了应用并通过服务暴露它。然后呢?
Kubernetes 提供了一些工具来帮助管理你的应用部署,包括扩缩容和更新。
我们将更深入讨论的特性包括
配置文件和
标签。
组织资源配置
许多应用需要创建多个资源,例如 Deployment 和 Service。
可以通过将多个资源组合在同一个文件中(在 YAML 中以 ---
分隔)
来简化对它们的管理。例如:
apiVersion: v1
kind: Service
metadata:
name: my-nginx-svc
labels:
app: nginx
spec:
type: LoadBalancer
ports:
- port: 80
selector:
app: nginx
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: my-nginx
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
可以用创建单个资源相同的方式来创建多个资源:
kubectl apply -f https://k8s.io/examples/application/nginx-app.yaml
service/my-nginx-svc created
deployment.apps/my-nginx created
资源将按照它们在文件中的顺序创建。
因此,最好先指定服务,这样在控制器(例如 Deployment)创建 Pod 时能够
确保调度器可以将与服务关联的多个 Pod 分散到不同节点。
kubectl apply
也接受多个 -f
参数:
kubectl apply -f https://k8s.io/examples/application/nginx/nginx-svc.yaml \
-f https://k8s.io/examples/application/nginx/nginx-deployment.yaml
建议的做法是,将同一个微服务或同一应用层相关的资源放到同一个文件中,
将同一个应用相关的所有文件按组存放到同一个目录中。
如果应用的各层使用 DNS 相互绑定,你可以将堆栈的所有组件一起部署。
还可以使用 URL 作为配置源,便于直接使用已经提交到 GitHub 上的配置文件进行部署:
kubectl apply -f https://k8s.io/examples/application/nginx/nginx-deployment.yaml
deployment.apps/my-nginx created
kubectl 中的批量操作
资源创建并不是 kubectl
可以批量执行的唯一操作。
kubectl
还可以从配置文件中提取资源名,以便执行其他操作,
特别是删除你之前创建的资源:
kubectl delete -f https://k8s.io/examples/application/nginx-app.yaml
deployment.apps "my-nginx" deleted
service "my-nginx-svc" deleted
在仅有两种资源的情况下,你可以使用"资源类型/资源名"的语法在命令行中
同时指定这两个资源:
kubectl delete deployments/my-nginx services/my-nginx-svc
对于资源数目较大的情况,你会发现使用 -l
或 --selector
指定筛选器(标签查询)能很容易根据标签筛选资源:
kubectl delete deployment,services -l app=nginx
deployment.apps "my-nginx" deleted
service "my-nginx-svc" deleted
由于 kubectl
用来输出资源名称的语法与其所接受的资源名称语法相同,
你可以使用 $()
或 xargs
进行链式操作:
kubectl get $(kubectl create -f docs/concepts/cluster-administration/nginx/ -o name | grep service)
kubectl create -f docs/concepts/cluster-administration/nginx/ -o name | grep service | xargs -i kubectl get {}
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-nginx-svc LoadBalancer 10.0.0.208 <pending> 80/TCP 0s
上面的命令中,我们首先使用 examples/application/nginx/
下的配置文件创建资源,
并使用 -o name
的输出格式(以"资源/名称"的形式打印每个资源)打印所创建的资源。
然后,我们通过 grep
来过滤 "service",最后再打印 kubectl get
的内容。
如果你碰巧在某个路径下的多个子路径中组织资源,那么也可以递归地在所有子路径上
执行操作,方法是在 --filename,-f
后面指定 --recursive
或者 -R
。
例如,假设有一个目录路径为 project/k8s/development
,它保存开发环境所需的
所有清单,并按资源类型组织:
project/k8s/development
├── configmap
│ └── my-configmap.yaml
├── deployment
│ └── my-deployment.yaml
└── pvc
└── my-pvc.yaml
默认情况下,对 project/k8s/development
执行的批量操作将停止在目录的第一级,
而不是处理所有子目录。
如果我们试图使用以下命令在此目录中创建资源,则会遇到一个错误:
kubectl apply -f project/k8s/development
error: you must provide one or more resources by argument or filename (.json|.yaml|.yml|stdin)
正确的做法是,在 --filename,-f
后面标明 --recursive
或者 -R
之后:
kubectl apply -f project/k8s/development --recursive
configmap/my-config created
deployment.apps/my-deployment created
persistentvolumeclaim/my-pvc created
--recursive
可以用于接受 --filename,-f
参数的任何操作,例如:
kubectl {create,get,delete,describe,rollout}
等。
有多个 -f
参数出现的时候,--recursive
参数也能正常工作:
kubectl apply -f project/k8s/namespaces -f project/k8s/development --recursive
namespace/development created
namespace/staging created
configmap/my-config created
deployment.apps/my-deployment created
persistentvolumeclaim/my-pvc created
如果你有兴趣进一步学习关于 kubectl
的内容,请阅读命令行工具(kubectl)。
有效地使用标签
到目前为止我们使用的示例中的资源最多使用了一个标签。
在许多情况下,应使用多个标签来区分集合。
例如,不同的应用可能会为 app
标签设置不同的值。
但是,类似 guestbook 示例
这样的多层应用,还需要区分每一层。前端可以带以下标签:
labels:
app: guestbook
tier: frontend
Redis 的主节点和从节点会有不同的 tier
标签,甚至还有一个额外的 role
标签:
labels:
app: guestbook
tier: backend
role: master
以及
labels:
app: guestbook
tier: backend
role: slave
标签允许我们按照标签指定的任何维度对我们的资源进行切片和切块:
kubectl apply -f examples/guestbook/all-in-one/guestbook-all-in-one.yaml
kubectl get pods -Lapp -Ltier -Lrole
NAME READY STATUS RESTARTS AGE APP TIER ROLE
guestbook-fe-4nlpb 1/1 Running 0 1m guestbook frontend <none>
guestbook-fe-ght6d 1/1 Running 0 1m guestbook frontend <none>
guestbook-fe-jpy62 1/1 Running 0 1m guestbook frontend <none>
guestbook-redis-master-5pg3b 1/1 Running 0 1m guestbook backend master
guestbook-redis-slave-2q2yf 1/1 Running 0 1m guestbook backend slave
guestbook-redis-slave-qgazl 1/1 Running 0 1m guestbook backend slave
my-nginx-divi2 1/1 Running 0 29m nginx <none> <none>
my-nginx-o0ef1 1/1 Running 0 29m nginx <none> <none>
kubectl get pods -lapp=guestbook,role=slave
NAME READY STATUS RESTARTS AGE
guestbook-redis-slave-2q2yf 1/1 Running 0 3m
guestbook-redis-slave-qgazl 1/1 Running 0 3m
金丝雀部署(Canary Deployments)
另一个需要多标签的场景是用来区分同一组件的不同版本或者不同配置的多个部署。
常见的做法是部署一个使用金丝雀发布来部署新应用版本
(在 Pod 模板中通过镜像标签指定),保持新旧版本应用同时运行。
这样,新版本在完全发布之前也可以接收实时的生产流量。
例如,你可以使用 track
标签来区分不同的版本。
主要稳定的发行版将有一个 track
标签,其值为 stable
:
name: frontend
replicas: 3
...
labels:
app: guestbook
tier: frontend
track: stable
...
image: gb-frontend:v3
然后,你可以创建 guestbook 前端的新版本,让这些版本的 track
标签带有不同的值
(即 canary
),以便两组 Pod 不会重叠:
name: frontend-canary
replicas: 1
...
labels:
app: guestbook
tier: frontend
track: canary
...
image: gb-frontend:v4
前端服务通过选择标签的公共子集(即忽略 track
标签)来覆盖两组副本,
以便流量可以转发到两个应用:
selector:
app: guestbook
tier: frontend
你可以调整 stable
和 canary
版本的副本数量,以确定每个版本将接收
实时生产流量的比例(在本例中为 3:1)。
一旦有信心,你就可以将新版本应用的 track
标签的值从
canary
替换为 stable
,并且将老版本应用删除。
想要了解更具体的示例,请查看
Ghost 部署教程。
更新标签
有时,现有的 pod 和其它资源需要在创建新资源之前重新标记。
这可以用 kubectl label
完成。
例如,如果想要将所有 nginx pod 标记为前端层,运行:
kubectl label pods -l app=nginx tier=fe
pod/my-nginx-2035384211-j5fhi labeled
pod/my-nginx-2035384211-u2c7e labeled
pod/my-nginx-2035384211-u3t6x labeled
首先用标签 "app=nginx" 过滤所有的 Pod,然后用 "tier=fe" 标记它们。
想要查看你刚才标记的 Pod,请运行:
kubectl get pods -l app=nginx -L tier
NAME READY STATUS RESTARTS AGE TIER
my-nginx-2035384211-j5fhi 1/1 Running 0 23m fe
my-nginx-2035384211-u2c7e 1/1 Running 0 23m fe
my-nginx-2035384211-u3t6x 1/1 Running 0 23m fe
这将输出所有 "app=nginx" 的 Pod,并有一个额外的描述 Pod 的 tier 的标签列
(用参数 -L
或者 --label-columns
标明)。
想要了解更多信息,请参考标签和
kubectl label
命令文档。
更新注解
有时,你可能希望将注解附加到资源中。注解是 API 客户端(如工具、库等)
用于检索的任意非标识元数据。这可以通过 kubectl annotate
来完成。例如:
kubectl annotate pods my-nginx-v4-9gw19 description='my frontend running nginx'
kubectl get pods my-nginx-v4-9gw19 -o yaml
apiVersion: v1
kind: pod
metadata:
annotations:
description: my frontend running nginx
...
想要了解更多信息,请参考注解和
kubectl annotate
命令文档。
扩缩你的应用
当应用上的负载增长或收缩时,使用 kubectl
能够实现应用规模的扩缩。
例如,要将 nginx 副本的数量从 3 减少到 1,请执行以下操作:
kubectl scale deployment/my-nginx --replicas=1
deployment.apps/my-nginx scaled
现在,你的 Deployment 管理的 Pod 只有一个了。
kubectl get pods -l app=nginx
NAME READY STATUS RESTARTS AGE
my-nginx-2035384211-j5fhi 1/1 Running 0 30m
想要让系统自动选择需要 nginx 副本的数量,范围从 1 到 3,请执行以下操作:
kubectl autoscale deployment/my-nginx --min=1 --max=3
horizontalpodautoscaler.autoscaling/my-nginx autoscaled
现在,你的 nginx 副本将根据需要自动地增加或者减少。
想要了解更多信息,请参考
kubectl scale命令文档、
kubectl autoscale
命令文档和水平 Pod 自动伸缩文档。
就地更新资源
有时,有必要对你所创建的资源进行小范围、无干扰地更新。
kubectl apply
建议在源代码管理中维护一组配置文件
(参见配置即代码),
这样,它们就可以和应用代码一样进行维护和版本管理。
然后,你可以用 kubectl apply
将配置变更应用到集群中。
这个命令将会把推送的版本与以前的版本进行比较,并应用你所做的更改,
但是不会自动覆盖任何你没有指定更改的属性。
kubectl apply -f https://k8s.io/examples/application/nginx/nginx-deployment.yaml
deployment.apps/my-nginx configured
注意,kubectl apply
将为资源增加一个额外的注解,以确定自上次调用以来对配置的更改。
执行时,kubectl apply
会在以前的配置、提供的输入和资源的当前配置之间
找出三方差异,以确定如何修改资源。
目前,新创建的资源是没有这个注解的,所以,第一次调用 kubectl apply
时
将使用提供的输入和资源的当前配置双方之间差异进行比较。
在第一次调用期间,它无法检测资源创建时属性集的删除情况。
因此,kubectl 不会删除它们。
所有后续的 kubectl apply
操作以及其他修改配置的命令,如 kubectl replace
和 kubectl edit
,都将更新注解,并允许随后调用的 kubectl apply
使用三方差异进行检查和执行删除。
kubectl edit
或者,你也可以使用 kubectl edit
更新资源:
kubectl edit deployment/my-nginx
这相当于首先 get
资源,在文本编辑器中编辑它,然后用更新的版本 apply
资源:
kubectl get deployment my-nginx -o yaml > /tmp/nginx.yaml
vi /tmp/nginx.yaml
# 做一些编辑,然后保存文件
kubectl apply -f /tmp/nginx.yaml
deployment.apps/my-nginx configured
rm /tmp/nginx.yaml
这使你可以更加容易地进行更重大的更改。
请注意,可以使用 EDITOR
或 KUBE_EDITOR
环境变量来指定编辑器。
想要了解更多信息,请参考
kubectl edit 文档。
kubectl patch
你可以使用 kubectl patch
来更新 API 对象。此命令支持 JSON patch、
JSON merge patch、以及 strategic merge patch。
请参考使用 kubectl patch 更新 API 对象和
kubectl patch。
破坏性的更新
在某些情况下,你可能需要更新某些初始化后无法更新的资源字段,或者你可能只想立即进行递归更改,
例如修复 Deployment 创建的不正常的 Pod。若要更改这些字段,请使用 replace --force
,
它将删除并重新创建资源。在这种情况下,你可以修改原始配置文件:
kubectl replace -f https://k8s.io/examples/application/nginx/nginx-deployment.yaml --force
deployment.apps/my-nginx deleted
deployment.apps/my-nginx replaced
在不中断服务的情况下更新应用
在某些时候,你最终需要更新已部署的应用,通常都是通过指定新的镜像或镜像标签,
如上面的金丝雀发布的场景中所示。kubectl
支持几种更新操作,
每种更新操作都适用于不同的场景。
我们将指导你通过 Deployment 如何创建和更新应用。
假设你正运行的是 1.14.2 版本的 nginx:
kubectl create deployment my-nginx --image=nginx:1.14.2
deployment.apps/my-nginx created
运行 3 个副本(这样新旧版本可以同时存在)
kubectl scale deployment my-nginx --current-replicas=1 --replicas=3
deployment.apps/my-nginx scaled
要更新到 1.16.1 版本,只需使用我们前面学到的 kubectl 命令将
.spec.template.spec.containers[0].image
从 nginx:1.14.2
修改为 nginx:1.16.1
。
kubectl edit deployment/my-nginx
没错,就是这样!Deployment 将在后台逐步更新已经部署的 nginx 应用。
它确保在更新过程中,只有一定数量的旧副本被开闭,并且只有一定基于所需 Pod 数量的新副本被创建。
想要了解更多细节,请参考 Deployment。
接下来
3 - 集群网络系统
集群网络系统是 Kubernetes 的核心部分,但是想要准确了解它的工作原理可是个不小的挑战。
下面列出的是网络系统的的四个主要问题:
- 高度耦合的容器间通信:这个已经被 Pod
和
localhost
通信解决了。 - Pod 间通信:这是本文档讲述的重点。
- Pod 与 Service 间通信:涵盖在 Service 中。
- 外部与 Service 间通信:也涵盖在 Service 中。
Kubernetes 的宗旨就是在应用之间共享机器。
通常来说,共享机器需要两个应用之间不能使用相同的端口,但是在多个应用开发者之间
去大规模地协调端口是件很困难的事情,尤其是还要让用户暴露在他们控制范围之外的集群级别的问题上。
动态分配端口也会给系统带来很多复杂度 - 每个应用都需要设置一个端口的参数,
而 API 服务器还需要知道如何将动态端口数值插入到配置模块中,服务也需要知道如何找到对方等等。
与其去解决这些问题,Kubernetes 选择了其他不同的方法。
要了解 Kubernetes 网络模型,请参阅此处。
如何实现 Kubernetes 的网络模型
网络模型由每个节点上的容器运行时实现。最常见的容器运行时使用
Container Network Interface (CNI) 插件来管理其网络和安全功能。
许多不同的 CNI 插件来自于许多不同的供应商。其中一些仅提供添加和删除网络接口的基本功能,
而另一些则提供更复杂的解决方案,例如与其他容器编排系统集成、运行多个 CNI 插件、高级 IPAM 功能等。
请参阅此页面了解
Kubernetes 支持的网络插件的非详尽列表。
接下来
网络模型的早期设计、运行原理以及未来的一些计划,
都在联网设计文档里有更详细的描述。
4 - 日志架构
应用日志可以让你了解应用内部的运行状况。日志对调试问题和监控集群活动非常有用。
大部分现代化应用都有某种日志记录机制。同样地,容器引擎也被设计成支持日志记录。
针对容器化应用,最简单且最广泛采用的日志记录方式就是写入标准输出和标准错误流。
但是,由容器引擎或运行时提供的原生功能通常不足以构成完整的日志记录方案。
例如,如果发生容器崩溃、Pod 被逐出或节点宕机等情况,你可能想访问应用日志。
在集群中,日志应该具有独立的存储,并且其生命周期与节点、Pod 或容器的生命周期相独立。
这个概念叫集群级的日志。
集群级日志架构需要一个独立的后端用来存储、分析和查询日志。
Kubernetes 并不为日志数据提供原生的存储解决方案。
相反,有很多现成的日志方案可以集成到 Kubernetes 中。
下面各节描述如何在节点上处理和存储日志。
Pod 和容器日志
Kubernetes 从正在运行的 Pod 中捕捉每个容器的日志。
此示例使用带有一个容器的 Pod
的清单,该容器每秒将文本写入标准输出一次。
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox:1.28
args: [/bin/sh, -c,
'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done']
要运行此 Pod,请执行以下命令:
kubectl apply -f https://k8s.io/examples/debug/counter-pod.yaml
输出为:
要获取这些日志,请执行以下 kubectl logs
命令:
输出类似于:
0: Fri Apr 1 11:42:23 UTC 2022
1: Fri Apr 1 11:42:24 UTC 2022
2: Fri Apr 1 11:42:25 UTC 2022
你可以使用 kubectl logs --previous
从容器的先前实例中检索日志。
如果你的 Pod 有多个容器,请如下通过将容器名称追加到该命令并使用 -c
标志来指定要访问哪个容器的日志:
kubectl logs counter -c count
详见 kubectl logs
文档。
节点的容器日志处理方式
容器运行时对写入到容器化应用程序的 stdout
和 stderr
流的所有输出进行处理和转发。
不同的容器运行时以不同的方式实现这一点;不过它们与 kubelet 的集成都被标准化为 CRI 日志格式。
默认情况下,如果容器重新启动,kubelet 会保留一个终止的容器及其日志。
如果一个 Pod 被逐出节点,所对应的所有容器及其日志也会被逐出。
kubelet 通过 Kubernetes API 的特殊功能将日志提供给客户端访问。
访问这个日志的常用方法是运行 kubectl logs
。
日志轮转
特性状态: Kubernetes v1.21 [stable]
你可以配置 kubelet 令其自动轮转日志。
如果配置轮转,kubelet 负责轮转容器日志并管理日志目录结构。
kubelet(使用 CRI)将此信息发送到容器运行时,而运行时则将容器日志写到给定位置。
你可以使用 kubelet 配置文件配置两个
kubelet 配置选项、
containerLogMaxSize
和 containerLogMaxFiles
。
这些设置分别允许你分别配置每个日志文件大小的最大值和每个容器允许的最大文件数。
当类似于基本日志示例一样运行 kubectl logs
时,
节点上的 kubelet 会处理请求并直接从日志文件读取。kubelet 将返回该日志文件的内容。
说明:只有最新的日志文件的内容可以通过 kubectl logs
获得。
例如,如果 Pod 写入 40 MiB 的日志,并且 kubelet 在 10 MiB 之后轮转日志,
则运行 kubectl logs
将最多返回 10 MiB 的数据。
系统组件日志
系统组件有两种类型:通常在容器中运行的组件和直接参与容器运行的组件。例如:
- kubelet 和容器运行时不在容器中运行。kubelet 运行你的容器
(一起按 Pod 分组)
- Kubernetes 调度器、控制器管理器和 API 服务器在 Pod 中运行
(通常是静态 Pod。
etcd 组件在控制平面中运行,最常见的也是作为静态 Pod。
如果你的集群使用 kube-proxy,则通常将其作为
DaemonSet
运行。
日志位置
kubelet 和容器运行时写入日志的方式取决于节点使用的操作系统:
在使用 systemd 的 Linux 节点上,kubelet 和容器运行时默认写入 journald。
你要使用 journalctl
来阅读 systemd 日志;例如:journalctl -u kubelet
。
如果 systemd 不存在,kubelet 和容器运行时将写入到 /var/log
目录中的 .log
文件。
如果你想将日志写入其他地方,你可以通过辅助工具 kube-log-runner
间接运行 kubelet,
并使用该工具将 kubelet 日志重定向到你所选择的目录。
你还可以使用已弃用的 kubelet 命令行参数 --log-dir
设置日志目录。
但是,kubelet 始终指示你的容器运行时将日志写入 /var/log/pods
中的目录。
有关 kube-log-runner
的更多信息,请阅读系统日志。
默认情况下,kubelet 将日志写入目录 C:\var\logs
中的文件(注意这不是 C:\var\log
)。
尽管 C:\var\log
是这些日志的 Kubernetes 默认位置,
但一些集群部署工具会将 Windows 节点设置为将日志放到 C:\var\log\kubelet
。
如果你想将日志写入其他地方,你可以通过辅助工具 kube-log-runner
间接运行 kubelet,
并使用该工具将 kubelet 日志重定向到你所选择的目录。
但是,kubelet 总是指示你的容器运行时在目录 C:\var\log\pods
中写入日志。
有关 kube-log-runner
的更多信息,请阅读系统日志。
对于在 Pod 中运行的 Kubernetes 集群组件,其日志会写入 /var/log
目录中的文件,
相当于绕过默认的日志机制(组件不会写入 systemd 日志)。
你可以使用 Kubernetes 的存储机制将持久存储映射到运行该组件的容器中。
有关 etcd 及其日志的详细信息,请查阅 etcd 文档。
同样,你可以使用 Kubernetes 的存储机制将持久存储映射到运行该组件的容器中。
说明:如果你部署 Kubernetes 集群组件(例如调度器)以将日志记录到从父节点共享的卷中,
则需要考虑并确保这些日志被轮转。 Kubernetes 不管理这种日志轮转。
你的操作系统可能会自动实现一些日志轮转。例如,如果你将目录 /var/log
共享到一个组件的静态 Pod 中,
则节点级日志轮转会将该目录中的文件视同为 Kubernetes 之外的组件所写入的文件。
一些部署工具会考虑日志轮转并将其自动化;而其他一些工具会将此留给你来处理。
集群级日志架构
虽然 Kubernetes 没有为集群级日志记录提供原生的解决方案,但你可以考虑几种常见的方法。
以下是一些选项:
- 使用在每个节点上运行的节点级日志记录代理。
- 在应用程序的 Pod 中,包含专门记录日志的边车(Sidecar)容器。
- 将日志直接从应用程序中推送到日志记录后端。
使用节点级日志代理
你可以通过在每个节点上使用 节点级的日志记录代理 来实现集群级日志记录。
日志记录代理是一种用于暴露日志或将日志推送到后端的专用工具。
通常,日志记录代理程序是一个容器,它可以访问包含该节点上所有应用程序容器的日志文件的目录。
由于日志记录代理必须在每个节点上运行,推荐以 DaemonSet
的形式运行该代理。
节点级日志在每个节点上仅创建一个代理,不需要对节点上的应用做修改。
容器向标准输出和标准错误输出写出数据,但在格式上并不统一。
节点级代理收集这些日志并将其进行转发以完成汇总。
使用边车容器运行日志代理
你可以通过以下方式之一使用边车(Sidecar)容器:
- 边车容器将应用程序日志传送到自己的标准输出。
- 边车容器运行一个日志代理,配置该日志代理以便从应用容器收集日志。
传输数据流的边车容器
利用边车容器,写入到自己的 stdout
和 stderr
传输流,
你就可以利用每个节点上的 kubelet 和日志代理来处理日志。
边车容器从文件、套接字或 journald 读取日志。
每个边车容器向自己的 stdout
和 stderr
流中输出日志。
这种方法允许你将日志流从应用程序的不同部分分离开,其中一些可能缺乏对写入
stdout
或 stderr
的支持。重定向日志背后的逻辑是最小的,因此它的开销不大。
另外,因为 stdout
和 stderr
由 kubelet 处理,所以你可以使用内置的工具 kubectl logs
。
例如,某 Pod 中运行一个容器,且该容器使用两个不同的格式写入到两个不同的日志文件。
下面是这个 Pod 的清单:
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox:1.28
args:
- /bin/sh
- -c
- >
i=0;
while true;
do
echo "$i: $(date)" >> /var/log/1.log;
echo "$(date) INFO $i" >> /var/log/2.log;
i=$((i+1));
sleep 1;
done
volumeMounts:
- name: varlog
mountPath: /var/log
volumes:
- name: varlog
emptyDir: {}
不建议在同一个日志流中写入不同格式的日志条目,即使你成功地将其重定向到容器的 stdout
流。
相反,你可以创建两个边车容器。每个边车容器可以从共享卷跟踪特定的日志文件,
并将文件内容重定向到各自的 stdout
流。
下面是运行两个边车容器的 Pod 的清单:
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox:1.28
args:
- /bin/sh
- -c
- >
i=0;
while true;
do
echo "$i: $(date)" >> /var/log/1.log;
echo "$(date) INFO $i" >> /var/log/2.log;
i=$((i+1));
sleep 1;
done
volumeMounts:
- name: varlog
mountPath: /var/log
- name: count-log-1
image: busybox:1.28
args: [/bin/sh, -c, 'tail -n+1 -F /var/log/1.log']
volumeMounts:
- name: varlog
mountPath: /var/log
- name: count-log-2
image: busybox:1.28
args: [/bin/sh, -c, 'tail -n+1 -F /var/log/2.log']
volumeMounts:
- name: varlog
mountPath: /var/log
volumes:
- name: varlog
emptyDir: {}
现在当你运行这个 Pod 时,你可以运行如下命令分别访问每个日志流:
kubectl logs counter count-log-1
输出类似于:
0: Fri Apr 1 11:42:26 UTC 2022
1: Fri Apr 1 11:42:27 UTC 2022
2: Fri Apr 1 11:42:28 UTC 2022
...
kubectl logs counter count-log-2
输出类似于:
Fri Apr 1 11:42:29 UTC 2022 INFO 0
Fri Apr 1 11:42:30 UTC 2022 INFO 0
Fri Apr 1 11:42:31 UTC 2022 INFO 0
...
如果你在集群中安装了节点级代理,由代理自动获取上述日志流,而无需任何进一步的配置。
如果你愿意,你可以将代理配置为根据源容器解析日志行。
即使对于 CPU 和内存使用率较低的 Pod(CPU 为几毫核,内存为几兆字节),将日志写入一个文件,
将这些日志流写到 stdout
也有可能使节点所需的存储量翻倍。
如果你有一个写入特定文件的应用程序,则建议将 /dev/stdout
设置为目标文件,而不是采用流式边车容器方法。
边车容器还可用于轮转应用程序本身无法轮转的日志文件。
这种方法的一个例子是定期运行 logrotate
的小容器。
但是,直接使用 stdout
和 stderr
更直接,而将轮转和保留策略留给 kubelet。
集群中安装的节点级代理会自动获取这些日志流,而无需进一步配置。
如果你愿意,你也可以配置代理程序来解析源容器的日志行。
注意,尽管 CPU 和内存使用率都很低(以多个 CPU 毫核指标排序或者按内存的兆字节排序),
向文件写日志然后输出到 stdout
流仍然会成倍地增加磁盘使用率。
如果你的应用向单一文件写日志,通常最好设置 /dev/stdout
作为目标路径,
而不是使用流式的边车容器方式。
如果应用程序本身不能轮转日志文件,则可以通过边车容器实现。
这种方式的一个例子是运行一个小的、定期轮转日志的容器。
然而,还是推荐直接使用 stdout
和 stderr
,将日志的轮转和保留策略交给 kubelet。
具有日志代理功能的边车容器
如果节点级日志记录代理程序对于你的场景来说不够灵活,
你可以创建一个带有单独日志记录代理的边车容器,将代理程序专门配置为与你的应用程序一起运行。
说明:在边车容器中使用日志代理会带来严重的资源损耗。
此外,你不能使用 kubectl logs
访问日志,因为日志并没有被 kubelet 管理。
下面是两个配置文件,可以用来实现一个带日志代理的边车容器。
第一个文件包含用来配置 fluentd 的
ConfigMap。
apiVersion: v1
kind: ConfigMap
metadata:
name: fluentd-config
data:
fluentd.conf: |
<source>
type tail
format none
path /var/log/1.log
pos_file /var/log/1.log.pos
tag count.format1
</source>
<source>
type tail
format none
path /var/log/2.log
pos_file /var/log/2.log.pos
tag count.format2
</source>
<match **>
type google_cloud
</match>
说明:你可以将此示例配置中的 fluentd 替换为其他日志代理,从应用容器内的其他来源读取数据。
第二个清单描述了一个运行 fluentd 边车容器的 Pod。
该 Pod 挂载一个卷,flutend 可以从这个卷上拣选其配置数据。
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
containers:
- name: count
image: busybox:1.28
args:
- /bin/sh
- -c
- >
i=0;
while true;
do
echo "$i: $(date)" >> /var/log/1.log;
echo "$(date) INFO $i" >> /var/log/2.log;
i=$((i+1));
sleep 1;
done
volumeMounts:
- name: varlog
mountPath: /var/log
- name: count-agent
image: registry.k8s.io/fluentd-gcp:1.30
env:
- name: FLUENTD_ARGS
value: -c /etc/fluentd-config/fluentd.conf
volumeMounts:
- name: varlog
mountPath: /var/log
- name: config-volume
mountPath: /etc/fluentd-config
volumes:
- name: varlog
emptyDir: {}
- name: config-volume
configMap:
name: fluentd-config
从应用中直接暴露日志目录
从各个应用中直接暴露和推送日志数据的集群日志机制已超出 Kubernetes 的范围。
接下来
5 - Kubernetes 系统组件指标
通过系统组件指标可以更好地了解系统组个内部发生的情况。系统组件指标对于构建仪表板和告警特别有用。
Kubernetes 组件以 Prometheus 格式
生成度量值。
这种格式是结构化的纯文本,旨在使人和机器都可以阅读。
Kubernetes 中组件的指标
在大多数情况下,可以通过 HTTP 访问组件的 /metrics
端点来获取组件的度量值。
对于那些默认情况下不暴露端点的组件,可以使用 --bind-address
标志启用。
这些组件的示例:
在生产环境中,你可能需要配置 Prometheus 服务器 或
某些其他指标搜集器以定期收集这些指标,并使它们在某种时间序列数据库中可用。
请注意,kubelet 还会在 /metrics/cadvisor
,
/metrics/resource
和 /metrics/probes
端点中公开度量值。这些度量值的生命周期各不相同。
如果你的集群使用了 RBAC,
则读取指标需要通过基于用户、组或 ServiceAccount 的鉴权,要求具有允许访问
/metrics
的 ClusterRole。
例如:
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus
rules:
- nonResourceURLs:
- "/metrics"
verbs:
- get
指标生命周期
Alpha 指标 → 稳定的指标 → 弃用的指标 → 隐藏的指标 → 删除的指标
Alpha 指标没有稳定性保证。这些指标可以随时被修改或者删除。
稳定的指标可以保证不会改变。这意味着:
- 稳定的、不包含已弃用(deprecated)签名的指标不会被删除(或重命名)
- 稳定的指标的类型不会被更改
已弃用的指标最终将被删除,不过仍然可用。
这类指标包含注解,标明其被废弃的版本。
例如:
隐藏的指标不会再被发布以供抓取,但仍然可用。
要使用隐藏指标,请参阅显式隐藏指标节。
删除的指标不再被发布,亦无法使用。
显示隐藏指标
如上所述,管理员可以通过设置可执行文件的命令行参数来启用隐藏指标,
如果管理员错过了上一版本中已经弃用的指标的迁移,则可以把这个用作管理员的逃生门。
show-hidden-metrics-for-version
标志接受版本号作为取值,版本号给出
你希望显示该发行版本中已弃用的指标。
版本表示为 x.y,其中 x 是主要版本,y 是次要版本。补丁程序版本不是必须的,
即使指标可能会在补丁程序发行版中弃用,原因是指标弃用策略规定仅针对次要版本。
该参数只能使用前一个次要版本。如果管理员将先前版本设置为 show-hidden-metrics-for-version
,
则先前版本中隐藏的度量值会再度生成。不允许使用过旧的版本,因为那样会违反指标弃用策略。
以指标 A
为例,此处假设 A
在 1.n 中已弃用。根据指标弃用策略,我们可以得出以下结论:
- 在版本
1.n
中,这个指标已经弃用,且默认情况下可以生成。 - 在版本
1.n+1
中,这个指标默认隐藏,可以通过命令行参数 show-hidden-metrics-for-version=1.n
来再度生成。 - 在版本
1.n+2
中,这个指标就将被从代码中移除,不会再有任何逃生窗口。
如果你要从版本 1.12
升级到 1.13
,但仍依赖于 1.12
中弃用的指标 A
,则应通过命令行设置隐藏指标:
--show-hidden-metrics=1.12
,并记住在升级到 1.14
版本之前删除此指标依赖项。
禁用加速器指标
kubelet 通过 cAdvisor 收集加速器指标。为了收集这些指标,对于 NVIDIA GPU 之类的加速器,
kubelet 在驱动程序上保持打开状态。这意味着为了执行基础结构更改(例如更新驱动程序),
集群管理员需要停止 kubelet 代理。
现在,收集加速器指标的责任属于供应商,而不是 kubelet。供应商必须提供一个收集指标的容器,
并将其公开给指标服务(例如 Prometheus)。
DisableAcceleratorUsageMetrics
特性门控
禁止由 kubelet 收集的指标。
关于何时会在默认情况下启用此功能也有一定规划。
组件指标
kube-controller-manager 指标
控制器管理器指标可提供有关控制器管理器性能和运行状况的重要洞察。
这些指标包括通用的 Go 语言运行时指标(例如 go_routine 数量)和控制器特定的度量指标,
例如可用于评估集群运行状况的 etcd 请求延迟或云提供商(AWS、GCE、OpenStack)的 API 延迟等。
从 Kubernetes 1.7 版本开始,详细的云提供商指标可用于 GCE、AWS、Vsphere 和 OpenStack 的存储操作。
这些指标可用于监控持久卷操作的运行状况。
比如,对于 GCE,这些指标称为:
cloudprovider_gce_api_request_duration_seconds { request = "instance_list"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_insert"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_delete"}
cloudprovider_gce_api_request_duration_seconds { request = "attach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "detach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "list_disk"}
kube-scheduler 指标
特性状态: Kubernetes v1.21 [beta]
调度器会暴露一些可选的指标,报告所有运行中 Pods 所请求的资源和期望的约束值。
这些指标可用来构造容量规划监控面板、访问调度约束的当前或历史数据、
快速发现因为缺少资源而无法被调度的负载,或者将 Pod 的实际资源用量
与其请求值进行比较。
kube-scheduler 组件能够辩识各个 Pod 所配置的资源
请求和约束。
在 Pod 的资源请求值或者约束值非零时,kube-scheduler 会以度量值时间序列的形式
生成报告。该时间序列值包含以下标签:
- 名字空间
- Pod 名称
- Pod 调度所处节点,或者当 Pod 未被调度时用空字符串表示
- 优先级
- 为 Pod 所指派的调度器
- 资源的名称(例如,
cpu
) - 资源的单位,如果知道的话(例如,
cores
)
一旦 Pod 进入完成状态(其 restartPolicy
为 Never
或 OnFailure
,且
其处于 Succeeded
或 Failed
Pod 阶段,或者已经被删除且所有容器都具有
终止状态),该时间序列停止报告,因为调度器现在可以调度其它 Pod 来执行。
这两个指标称作 kube_pod_resource_request
和 kube_pod_resource_limit
。
指标暴露在 HTTP 端点 /metrics/resources
,与调度器上的 /metrics
端点
一样要求相同的访问授权。你必须使用
--show-hidden-metrics-for-version=1.20
标志才能暴露那些稳定性为 Alpha
的指标。
禁用指标
你可以通过命令行标志 --disabled-metrics
来关闭某指标。
在例如某指标会带来性能问题的情况下,这一操作可能是有用的。
标志的参数值是一组被禁止的指标(例如:--disabled-metrics=metric1,metric2
)。
指标顺序性保证
在 Alpha 阶段,标志只能接受一组映射值作为可以使用的指标标签。
每个映射值的格式为<指标名称>,<标签名称>=<可用标签列表>
,其中
<可用标签列表>
是一个用逗号分隔的、可接受的标签名的列表。
最终的格式看起来会是这样:
--allow-label-value <指标名称>,<标签名称>='<可用值1>,<可用值2>...', <指标名称2>,<标签名称>='<可用值1>, <可用值2>...', ...
下面是一个例子:
--allow-label-value number_count_metric,odd_number='1,3,5', number_count_metric,even_number='2,4,6', date_gauge_metric,weekend='Saturday,Sunday'
接下来
6 - 系统日志
系统组件的日志记录集群中发生的事件,这对于调试非常有用。
你可以配置日志的精细度,以展示更多或更少的细节。
日志可以是粗粒度的,如只显示组件内的错误,
也可以是细粒度的,如显示事件的每一个跟踪步骤(比如 HTTP 访问日志、pod 状态更新、控制器动作或调度器决策)。
Klog
klog 是 Kubernetes 的日志库。
klog
为 Kubernetes 系统组件生成日志消息。
有关 klog 配置的更多信息,请参见命令行工具参考。
Kubernetes 正在进行简化其组件日志的努力。下面的 klog 命令行参数从 Kubernetes 1.23
开始已被废弃,
会在未来版本中移除:
--add-dir-header
--alsologtostderr
--log-backtrace-at
--log-dir
--log-file
--log-file-max-size
--logtostderr
--one-output
--skip-headers
--skip-log-headers
--stderrthreshold
输出总会被写到标准错误输出(stderr)之上,无论输出格式如何。
对输出的重定向将由调用 Kubernetes 组件的软件来处理。
这一软件可以是 POSIX Shell 或者类似 systemd 这样的工具。
在某些场合下,例如对于无发行主体的(distroless)容器或者 Windows 系统服务,
这些替代方案都是不存在的。那么你可以使用
kube-log-runner
可执行文件来作为 Kubernetes 的封装层,完成对输出的重定向。
在很多 Kubernetes 基础镜像中,都包含一个预先构建的可执行程序。
这个程序原来称作 /go-runner
,而在服务器和节点的发行版本库中,称作 kube-log-runner
。
下表展示的是 kube-log-runner
调用与 Shell 重定向之间的对应关系:
用法 | POSIX Shell(例如 Bash) | kube-log-runner <options> <cmd> |
---|
合并 stderr 与 stdout,写出到 stdout | 2>&1 | kube-log-runner (默认行为 ) |
将 stderr 与 stdout 重定向到日志文件 | 1>>/tmp/log 2>&1 | kube-log-runner -log-file=/tmp/log |
输出到 stdout 并复制到日志文件中 | 2>&1 | tee -a /tmp/log | kube-log-runner -log-file=/tmp/log -also-stdout |
仅将 stdout 重定向到日志 | >/tmp/log | kube-log-runner -log-file=/tmp/log -redirect-stderr=false |
klog 输出
传统的 klog 原生格式示例:
I1025 00:15:15.525108 1 httplog.go:79] GET /api/v1/namespaces/kube-system/pods/metrics-server-v0.3.1-57c75779f-9p8wg: (1.512ms) 200 [pod_nanny/v0.0.0 (linux/amd64) kubernetes/$Format 10.56.1.19:51756]
消息字符串可能包含换行符:
I1025 00:15:15.525108 1 example.go:79] This is a message
which has a line break.
结构化日志
特性状态: Kubernetes v1.23 [beta]
警告:迁移到结构化日志消息是一个正在进行的过程。在此版本中,并非所有日志消息都是结构化的。
解析日志文件时,你也必须要处理非结构化日志消息。
日志格式和值的序列化可能会发生变化。
结构化日志记录旨在日志消息中引入统一结构,以便以编程方式提取信息。
你可以方便地用更小的开销来处理结构化日志。
生成日志消息的代码决定其使用传统的非结构化的 klog 还是结构化的日志。
默认的结构化日志消息是以文本形式呈现的,其格式与传统的 klog 保持向后兼容:
<klog header> "<message>" <key1>="<value1>" <key2>="<value2>" ...
示例:
I1025 00:15:15.525108 1 controller_utils.go:116] "Pod status updated" pod="kube-system/kubedns" status="ready"
字符串在输出时会被添加引号。其他数值类型都使用 %+v
来格式化,因此可能导致日志消息会延续到下一行,
具体取决于数据本身。
I1025 00:15:15.525108 1 example.go:116] "Example" data="This is text with a line break\nand \"quotation marks\"." someInt=1 someFloat=0.1 someStruct={StringField: First line,
second line.}
上下文日志
特性状态: Kubernetes v1.24 [alpha]
上下文日志建立在结构化日志之上。
它主要是关于开发人员如何使用日志记录调用:基于该概念的代码将更加灵活,
并且支持在结构化日志 KEP
中描述的额外用例。
如果开发人员在他们的组件中使用额外的函数,比如 WithValues
或 WithName
,
那么日志条目将会包含额外的信息,这些信息会被调用者传递给函数。
目前这一特性是由 StructuredLogging
特性门控所控制的,默认关闭。
这个基础设施是在 1.24 中被添加的,并不需要修改组件。
该 component-base/logs/example
命令演示了如何使用新的日志记录调用以及组件如何支持上下文日志记录。
$ cd $GOPATH/src/k8s.io/kubernetes/staging/src/k8s.io/component-base/logs/example/cmd/
$ go run . --help
...
--feature-gates mapStringBool A set of key=value pairs that describe feature gates for alpha/experimental features. Options are:
AllAlpha=true|false (ALPHA - default=false)
AllBeta=true|false (BETA - default=false)
ContextualLogging=true|false (ALPHA - default=false)
$ go run . --feature-gates ContextualLogging=true
...
I0404 18:00:02.916429 451895 logger.go:94] "example/myname: runtime" foo="bar" duration="1m0s"
I0404 18:00:02.916447 451895 logger.go:95] "example: another runtime" foo="bar" duration="1m0s"
example
前缀和 foo="bar"
会被函数的调用者添加上,
不需修改该函数,它就会记录 runtime
消息和 duration="1m0s"
值。
禁用上下文日志后,WithValues
和 WithName
什么都不会做,
并且会通过调用全局的 klog 日志记录器记录日志。
因此,这些附加信息不再出现在日志输出中:
$ go run . --feature-gates ContextualLogging=false
...
I0404 18:03:31.171945 452150 logger.go:94] "runtime" duration="1m0s"
I0404 18:03:31.171962 452150 logger.go:95] "another runtime" duration="1m0s"
特性状态: Kubernetes v1.19 [alpha]
警告:JSON 输出并不支持太多标准 klog 参数。对于不受支持的 klog 参数的列表,
请参见命令行工具参考。
并不是所有日志都保证写成 JSON 格式(例如,在进程启动期间)。
如果你打算解析日志,请确保可以处理非 JSON 格式的日志行。
字段名和 JSON 序列化可能会发生变化。
--logging-format=json
参数将日志格式从 klog 原生格式改为 JSON 格式。
JSON 日志格式示例(美化输出):
{
"ts": 1580306777.04728,
"v": 4,
"msg": "Pod status updated",
"pod":{
"name": "nginx-1",
"namespace": "default"
},
"status": "ready"
}
具有特殊意义的 key:
ts
- Unix 时间风格的时间戳(必选项,浮点值)v
- 精细度(仅用于 info 级别,不能用于错误信息,整数)err
- 错误字符串(可选项,字符串)msg
- 消息(必选项,字符串)
当前支持 JSON 格式的组件列表:
日志精细度级别
参数 -v
控制日志的精细度。增大该值会增大日志事件的数量。
减小该值可以减小日志事件的数量。增大精细度会记录更多的不太严重的事件。
精细度设置为 0 时只记录关键(critical)事件。
日志位置
有两种类型的系统组件:运行在容器中的组件和不运行在容器中的组件。例如:
- Kubernetes 调度器和 kube-proxy 在容器中运行。
- kubelet 和容器运行时不在容器中运行。
在使用 systemd 的系统中,kubelet 和容器运行时写入 journald。
在别的系统中,日志写入 /var/log
目录下的 .log
文件中。
容器中的系统组件总是绕过默认的日志记录机制,写入 /var/log
目录下的 .log
文件。
与容器日志类似,你应该轮转 /var/log
目录下系统组件日志。
在 kube-up.sh
脚本创建的 Kubernetes 集群中,日志轮转由 logrotate
工具配置。
logrotate
工具,每天或者当日志大于 100MB 时,轮转日志。
接下来
7 - 追踪 Kubernetes 系统组件
特性状态: Kubernetes v1.22 [alpha]
系统组件追踪功能记录各个集群操作的时延信息和这些操作之间的关系。
Kubernetes 组件基于 gRPC 导出器的
OpenTelemetry 协议
发送追踪信息,并用
OpenTelemetry Collector
收集追踪信息,再将其转交给追踪系统的后台。
追踪信息的收集
关于收集追踪信息、以及使用收集器的完整指南,可参见
Getting Started with the OpenTelemetry Collector。
不过,还有一些特定于 Kubernetes 组件的事项值得注意。
默认情况下,Kubernetes 组件使用 gRPC 的 OTLP 导出器来导出追踪信息,将信息写到
IANA OpenTelemetry 端口。
举例来说,如果收集器以 Kubernetes 组件的边车模式运行,以下接收器配置会收集 span 信息,并将它们写入到标准输出。
receivers:
otlp:
protocols:
grpc:
exporters:
# 用适合你后端环境的导出器替换此处的导出器
logging:
logLevel: debug
service:
pipelines:
traces:
receivers: [otlp]
exporters: [logging]
组件追踪
kube-apiserver 追踪
kube-apiserver 为传入的 HTTP 请求、传出到 webhook 和 etcd 的请求以及重入的请求生成 span。
由于 kube-apiserver 通常是一个公开的端点,所以它通过出站的请求传播
W3C 追踪上下文,
但不使用入站请求的追踪上下文。
在 kube-apiserver 中启用追踪
要启用追踪特性,需要启用 kube-apiserver 上的 APIServerTracing
特性门控。
然后,使用 --tracing-config-file=<<配置文件路径>
为 kube-apiserver 提供追踪配置文件。
下面是一个示例配置,它为万分之一的请求记录 spans,并使用了默认的 OpenTelemetry 端口。
apiVersion: apiserver.config.k8s.io/v1alpha1
kind: TracingConfiguration
# default value
#endpoint: localhost:4317
samplingRatePerMillion: 100
有关 TracingConfiguration 结构体的更多信息,请参阅
API 服务器配置 API (v1alpha1)。
kubelet 追踪
特性状态: Kubernetes v1.25 [alpha]
kubelet CRI 接口和实施身份验证的 HTTP 服务器被插桩以生成追踪 span。
与 API 服务器一样,端点和采样率是可配置的。
追踪上下文传播也是可以配置的。始终优先采用父 span 的采样决策。
用户所提供的追踪配置采样率将被应用到不带父级的 span。
如果在没有配置端点的情况下启用,将使用默认的 OpenTelemetry Collector 接收器地址 “localhost:4317”。
在 kubelet 中启用追踪
要启用 span,需在 kubelet 上启用 KubeletTracing
特性门控。
另外,为 kubelet 提供追踪配置。
以下是 kubelet 配置的示例代码片段,每 10000 个请求中记录一个请求的 span,并使用默认的 OpenTelemetry 端点:
apiVersion: kubelet.config.k8s.io/v1beta1
kind: KubeletConfiguration
featureGates:
KubeletTracing: true
tracing:
# 默认值
#endpoint: localhost:4317
samplingRatePerMillion: 100
稳定性
追踪工具仍在积极开发中,未来它会以多种方式发生变化。
这些变化包括:span 名称、附加属性、检测端点等等。
此类特性在达到稳定版本之前,不能保证追踪工具的向后兼容性。
接下来
8 - Kubernetes 中的代理
本文讲述了 Kubernetes 中所使用的代理。
代理
用户在使用 Kubernetes 的过程中可能遇到几种不同的代理(proxy):
kubectl proxy:
- 运行在用户的桌面或 pod 中
- 从本机地址到 Kubernetes apiserver 的代理
- 客户端到代理使用 HTTP 协议
- 代理到 apiserver 使用 HTTPS 协议
- 指向 apiserver
- 添加认证头信息
apiserver proxy:
- 是一个建立在 apiserver 内部的“堡垒”
- 将集群外部的用户与集群 IP 相连接,这些 IP 是无法通过其他方式访问的
- 运行在 apiserver 进程内
- 客户端到代理使用 HTTPS 协议 (如果配置 apiserver 使用 HTTP 协议,则使用 HTTP 协议)
- 通过可用信息进行选择,代理到目的地可能使用 HTTP 或 HTTPS 协议
- 可以用来访问 Node、 Pod 或 Service
- 当用来访问 Service 时,会进行负载均衡
kube proxy:
- 在每个节点上运行
- 代理 UDP、TCP 和 SCTP
- 不支持 HTTP
- 提供负载均衡能力
- 只用来访问 Service
apiserver 之前的代理/负载均衡器:
- 在不同集群中的存在形式和实现不同 (如 nginx)
- 位于所有客户端和一个或多个 API 服务器之间
- 存在多个 API 服务器时,扮演负载均衡器的角色
外部服务的云负载均衡器:
- 由一些云供应商提供 (如 AWS ELB、Google Cloud Load Balancer)
- Kubernetes 服务类型为
LoadBalancer
时自动创建 - 通常仅支持 UDP/TCP 协议
- SCTP 支持取决于云供应商的负载均衡器实现
- 不同云供应商的云负载均衡器实现不同
Kubernetes 用户通常只需要关心前两种类型的代理,集群管理员通常需要确保后面几种类型的代理设置正确。
请求重定向
代理已经取代重定向功能,重定向功能已被弃用。
9 - API 优先级和公平性
特性状态: Kubernetes v1.20 [beta]
对于集群管理员来说,控制 Kubernetes API 服务器在过载情况下的行为是一项关键任务。
kube-apiserver
有一些控件(例如:命令行标志 --max-requests-inflight
和 --max-mutating-requests-inflight
),
可以限制将要接受的未处理的请求,从而防止过量请求入站,潜在导致 API 服务器崩溃。
但是这些标志不足以保证在高流量期间,最重要的请求仍能被服务器接受。
API 优先级和公平性(APF)是一种替代方案,可提升上述最大并发限制。
APF 以更细粒度的方式对请求进行分类和隔离。
它还引入了空间有限的排队机制,因此在非常短暂的突发情况下,API 服务器不会拒绝任何请求。
通过使用公平排队技术从队列中分发请求,这样,
一个行为不佳的控制器就不会饿死其他控制器
(即使优先级相同)。
本功能特性在设计上期望其能与标准控制器一起工作得很好;
这类控制器使用通知组件(Informers)获得信息并对 API 请求的失效作出反应,
在处理失效时能够执行指数型回退。其他客户端也以类似方式工作。
注意:属于 “长时间运行” 类型的某些请求(例如远程命令执行或日志拖尾)不受 API 优先级和公平性过滤器的约束。
如果未启用 APF 特性,即便设置 --max-requests-inflight
标志,该类请求也不受约束。
APF 适用于 watch 请求。当 APF 被禁用时,watch 请求不受 --max-requests-inflight
限制。
启用/禁用 API 优先级和公平性
API 优先级与公平性(APF)特性由特性门控控制,默认情况下启用。
有关特性门控的一般性描述以及如何启用和禁用特性门控,
请参见特性门控。
APF 的特性门控称为 APIPriorityAndFairness
。
此特性也与某个 API 组相关:
(a) v1alpha1
和 v1beta1
版本,默认被禁用;
(b) v1beta2
和 v1beta3
版本,默认被启用。
你可以在启动 kube-apiserver
时,添加以下命令行标志来禁用此功能门控及 API Beta 组:
kube-apiserver \
--feature-gates=APIPriorityAndFairness=false \
--runtime-config=flowcontrol.apiserver.k8s.io/v1beta2=false,flowcontrol.apiserver.k8s.io/v1beta3=false \
# ...其他配置不变
或者,你也可以通过
--runtime-config=flowcontrol.apiserver.k8s.io/v1alpha1=true,flowcontrol.apiserver.k8s.io/v1beta1=true
启用 API 组的 v1alpha1 和 v1beta1 版本。
命令行标志 --enable-priority-fairness=false
将彻底禁用 APF 特性,
即使其他标志启用它也是无效。
概念
APF 特性包含几个不同的功能。
传入的请求通过 FlowSchema 按照其属性分类,并分配优先级。
每个优先级维护自定义的并发限制,加强了隔离度,这样不同优先级的请求,就不会相互饿死。
在同一个优先级内,公平排队算法可以防止来自不同 流(Flow) 的请求相互饿死。
该算法将请求排队,通过排队机制,防止在平均负载较低时,通信量突增而导致请求失败。
优先级
如果未启用 APF,API 服务器中的整体并发量将受到 kube-apiserver
的参数
--max-requests-inflight
和 --max-mutating-requests-inflight
的限制。
启用 APF 后,将对这些参数定义的并发限制进行求和,然后将总和分配到一组可配置的 优先级 中。
每个传入的请求都会分配一个优先级;每个优先级都有各自的限制,设定特定限制允许分发的并发请求数。
例如,默认配置包括针对领导者选举请求、内置控制器请求和 Pod 请求都单独设置优先级。
这表示即使异常的 Pod 向 API 服务器发送大量请求,也无法阻止领导者选举或内置控制器的操作执行成功。
优先级的并发限制会被定期调整,允许利用率较低的优先级将并发度临时借给利用率很高的优先级。
这些限制基于一个优先级可以借出多少个并发度以及可以借用多少个并发度的额定限制和界限,
所有这些均源自下述配置对象。
请求占用的席位
上述并发管理的描述是基线情况。其中,各个请求具有不同的持续时间,
但在与一个优先级的并发限制进行比较时,这些请求在任何给定时刻都以同等方式进行计数。
在这个基线场景中,每个请求占用一个并发单位。
我们用 “席位(Seat)” 一词来表示一个并发单位,其灵感来自火车或飞机上每位乘客占用一个固定座位的供应方式。
但有些请求所占用的席位不止一个。有些请求是服务器预估将返回大量对象的 list 请求。
和所需运行时间相近的其他请求相比,我们发现这类请求会给服务器带来异常沉重的负担。
出于这个原因,服务器估算将返回的对象数量,并认为请求所占用的席位数与估算得到的数量成正比。
watch 请求的执行时间调整
APF 管理 watch 请求,但这需要考量基线行为之外的一些情况。
第一个关注点是如何判定 watch 请求的席位占用时长。
取决于请求参数不同,对 watch 请求的响应可能以针对所有预先存在的对象 create 通知开头,也可能不这样。
一旦最初的突发通知(如果有)结束,APF 将认为 watch 请求已经用完其席位。
每当向服务器通知创建/更新/删除一个对象时,正常通知都会以并发突发的方式发送到所有相关的 watch 响应流。
为此,APF 认为每个写入请求都会在实际写入完成后花费一些额外的时间来占用席位。
服务器估算要发送的通知数量,并调整写入请求的席位数以及包含这些额外工作后的席位占用时间。
排队
即使在同一优先级内,也可能存在大量不同的流量源。
在过载情况下,防止一个请求流饿死其他流是非常有价值的
(尤其是在一个较为常见的场景中,一个有故障的客户端会疯狂地向 kube-apiserver 发送请求,
理想情况下,这个有故障的客户端不应对其他客户端产生太大的影响)。
公平排队算法在处理具有相同优先级的请求时,实现了上述场景。
每个请求都被分配到某个 流(Flow) 中,该 流 由对应的 FlowSchema 的名字加上一个
流区分项(Flow Distinguisher) 来标识。
这里的流区分项可以是发出请求的用户、目标资源的名字空间或什么都不是。
系统尝试为不同流中具有相同优先级的请求赋予近似相等的权重。
要启用对不同实例的不同处理方式,多实例的控制器要分别用不同的用户名来执行身份认证。
将请求划分到流中之后,APF 功能将请求分配到队列中。
分配时使用一种称为混洗分片(Shuffle-Sharding)的技术。
该技术可以相对有效地利用队列隔离低强度流与高强度流。
排队算法的细节可针对每个优先等级进行调整,并允许管理员在内存占用、
公平性(当总流量超标时,各个独立的流将都会取得进展)、
突发流量的容忍度以及排队引发的额外延迟之间进行权衡。
豁免请求
某些特别重要的请求不受制于此特性施加的任何限制。
这些豁免可防止不当的流控配置完全禁用 API 服务器。
资源
流控 API 涉及两种资源。
PriorityLevelConfiguration
定义可用的优先级和可处理的并发预算量,还可以微调排队行为。
FlowSchema
用于对每个入站请求进行分类,并与一个 PriorityLevelConfiguration 相匹配。
此外同一 API 组还有一个 v1alpha1
版本,其中包含语法和语义都相同的资源类别。
PriorityLevelConfiguration
一个 PriorityLevelConfiguration 表示单个优先级。每个 PriorityLevelConfiguration
对未完成的请求数有各自的限制,对排队中的请求数也有限制。
PriorityLevelConfiguration 的额定并发限制不是指定请求绝对数量,而是以“额定并发份额”的形式指定。
API 服务器的总并发量限制通过这些份额按例分配到现有 PriorityLevelConfiguration 中,
为每个级别按照数量赋予其额定限制。
集群管理员可以更改 --max-requests-inflight
(或 --max-mutating-requests-inflight
)的值,
再重新启动 kube-apiserver
来增加或减小服务器的总流量,
然后所有的 PriorityLevelConfiguration 将看到其最大并发增加(或减少)了相同的比例。
注意:在 v1beta3
之前的版本中,相关的 PriorityLevelConfiguration
字段被命名为“保证并发份额”而不是“额定并发份额”。此外在 Kubernetes v1.25
及更早的版本中,不存在定期的调整:所实施的始终是额定/保证的限制,不存在调整。
一个优先级可以借出的并发数界限以及可以借用的并发数界限在
PriorityLevelConfiguration 表现该优先级的额定限制。
这些界限值乘以额定限制/100.0 并取整,被解析为绝对席位数量。
某优先级的动态调整并发限制范围被约束在
(a) 其额定限制的下限值减去其可借出的席位和
(b) 其额定限制的上限值加上它可以借用的席位之间。
在每次调整时,通过每个优先级推导得出动态限制,具体过程为回收最近出现需求的所有借出的席位,
然后在刚刚描述的界限内共同公平地响应有关这些优先级最近的席位需求。
注意:启用 APF 特性时,服务器的总并发限制被设置为 --max-requests-inflight
及
--max-mutating-requests-inflight
之和。变更性和非变更性请求之间不再有任何不同;
如果你想针对某给定资源分别进行处理,请制作单独的 FlowSchema,分别匹配变更性和非变更性的动作。
当入站请求的数量大于分配的 PriorityLevelConfiguration 中允许的并发级别时,
type
字段将确定对额外请求的处理方式。
Reject
类型,表示多余的流量将立即被 HTTP 429(请求过多)错误所拒绝。
Queue
类型,表示对超过阈值的请求进行排队,将使用阈值分片和公平排队技术来平衡请求流之间的进度。
公平排队算法支持通过排队配置对优先级微调。
可以在增强建议中阅读算法的详细信息,
但总之:
queues
递增能减少不同流之间的冲突概率,但代价是增加了内存使用量。
值为 1 时,会禁用公平排队逻辑,但仍允许请求排队。
queueLengthLimit
递增可以在不丢弃任何请求的情况下支撑更大的突发流量,
但代价是增加了等待时间和内存使用量。
下表显示了有趣的随机分片配置集合,每行显示给定的老鼠(低强度流)
被不同数量的大象挤压(高强度流)的概率。
表来源请参阅: https://play.golang.org/p/Gi0PLgVHiUg
混分切片配置示例随机分片 | 队列数 | 1 个大象 | 4 个大象 | 16 个大象 |
---|
12 | 32 | 4.428838398950118e-09 | 0.11431348830099144 | 0.9935089607656024 |
10 | 32 | 1.550093439632541e-08 | 0.0626479840223545 | 0.9753101519027554 |
10 | 64 | 6.601827268370426e-12 | 0.00045571320990370776 | 0.49999929150089345 |
9 | 64 | 3.6310049976037345e-11 | 0.00045501212304112273 | 0.4282314876454858 |
8 | 64 | 2.25929199850899e-10 | 0.0004886697053040446 | 0.35935114681123076 |
8 | 128 | 6.994461389026097e-13 | 3.4055790161620863e-06 | 0.02746173137155063 |
7 | 128 | 1.0579122850901972e-11 | 6.960839379258192e-06 | 0.02406157386340147 |
7 | 256 | 7.597695465552631e-14 | 6.728547142019406e-08 | 0.0006709661542533682 |
6 | 256 | 2.7134626662687968e-12 | 2.9516464018476436e-07 | 0.0008895654642000348 |
6 | 512 | 4.116062922897309e-14 | 4.982983350480894e-09 | 2.26025764343413e-05 |
6 | 1024 | 6.337324016514285e-16 | 8.09060164312957e-11 | 4.517408062903668e-07 |
FlowSchema
FlowSchema 匹配一些入站请求,并将它们分配给优先级。
每个入站请求都会对所有 FlowSchema 测试是否匹配,
首先从 matchingPrecedence
数值最低的匹配开始(我们认为这是逻辑上的最高优先级),
然后依次进行,直到首个匹配出现。
注意:对一个请求来说,只有首个匹配的 FlowSchema 才有意义。
如果一个入站请求与多个 FlowSchema 匹配,则将基于逻辑上最高优先级 matchingPrecedence
的请求进行筛选。
如果一个请求匹配多个 FlowSchema 且 matchingPrecedence
的值相同,则按 name
的字典序选择最小,
但是最好不要依赖它,而是确保不存在两个 FlowSchema 具有相同的 matchingPrecedence
值。
当给定的请求与某个 FlowSchema 的 rules
的其中一条匹配,那么就认为该请求与该 FlowSchema 匹配。
判断规则与该请求是否匹配,不仅要求该条规则的 subjects
字段至少存在一个与该请求相匹配,
而且要求该条规则的 resourceRules
或 nonResourceRules
(取决于传入请求是针对资源 URL 还是非资源 URL)字段至少存在一个与该请求相匹配。
对于 subjects
中的 name
字段和资源和非资源规则的
verbs
、apiGroups
、resources
、namespaces
和 nonResourceURLs
字段,
可以指定通配符 *
来匹配任意值,从而有效地忽略该字段。
FlowSchema 的 distinguisherMethod.type
字段决定了如何把与该模式匹配的请求分散到各个流中。
可能是 ByUser
,在这种情况下,一个请求用户将无法饿死其他容量的用户;
或者是 ByNamespace
,在这种情况下,一个名字空间中的资源请求将无法饿死其它名字空间的资源请求;
或者它可以为空(或者可以完全省略 distinguisherMethod
),
在这种情况下,与此 FlowSchema 匹配的请求将被视为单个流的一部分。
资源和你的特定环境决定了如何选择正确一个 FlowSchema。
默认值
每个 kube-apiserver 会维护两种类型的 APF 配置对象:强制的(Mandatory)和建议的(Suggested)。
强制的配置对象
有四种强制的配置对象对应内置的守护行为。这里的行为是服务器在还未创建对象之前就具备的行为,
而当这些对象存在时,其规约反映了这类行为。四种强制的对象如下:
- 强制的
exempt
优先级用于完全不受流控限制的请求:它们总是立刻被分发。
强制的 exempt
FlowSchema 把 system:masters
组的所有请求都归入该优先级。
如果合适,你可以定义新的 FlowSchema,将其他请求定向到该优先级。
- 强制的
catch-all
优先级与强制的 catch-all
FlowSchema 结合使用,
以确保每个请求都分类。一般而言,你不应该依赖于 catch-all
的配置,
而应适当地创建自己的 catch-all
FlowSchema 和 PriorityLevelConfiguration
(或使用默认安装的 global-default
配置)。
因为这一优先级不是正常场景下要使用的,catch-all
优先级的并发度份额很小,
并且不会对请求进行排队。
建议的配置对象
建议的 FlowSchema 和 PriorityLevelConfiguration 包含合理的默认配置。
你可以修改这些对象或者根据需要创建新的配置对象。如果你的集群可能承受较重负载,
那么你就要考虑哪种配置最合适。
建议的配置把请求分为六个优先级:
node-high
优先级用于来自节点的健康状态更新。
system
优先级用于 system:nodes
组(即 kubelet)的与健康状态更新无关的请求;
kubelet 必须能连上 API 服务器,以便工作负载能够调度到其上。
leader-election
优先级用于内置控制器的领导选举的请求
(特别是来自 kube-system
名字空间中 system:kube-controller-manager
和
system:kube-scheduler
用户和服务账号,针对 endpoints
、configmaps
或 leases
的请求)。
将这些请求与其他流量相隔离非常重要,因为领导者选举失败会导致控制器发生故障并重新启动,
这反过来会导致新启动的控制器在同步信息时,流量开销更大。
workload-high
优先级用于内置控制器的其他请求。workload-low
优先级用于来自所有其他服务帐户的请求,通常包括来自 Pod
中运行的控制器的所有请求。global-default
优先级可处理所有其他流量,例如:非特权用户运行的交互式
kubectl
命令。
建议的 FlowSchema 用来将请求导向上述的优先级内,这里不再一一列举。
强制的与建议的配置对象的维护
每个 kube-apiserver
都独立地维护其强制的与建议的配置对象,
这一维护操作既是服务器的初始行为,也是其周期性操作的一部分。
因此,当存在不同版本的服务器时,如果各个服务器对于配置对象中的合适内容有不同意见,
就可能出现抖动。
每个 kube-apiserver
都会对强制的与建议的配置对象执行初始的维护操作,
之后(每分钟)对这些对象执行周期性的维护。
对于强制的配置对象,维护操作包括确保对象存在并且包含合适的规约(如果存在的话)。
服务器会拒绝创建或更新与其守护行为不一致的规约。
对建议的配置对象的维护操作被设计为允许其规约被重载。删除操作是不允许的,
维护操作期间会重建这类配置对象。如果你不需要某个建议的配置对象,
你需要将它放在一边,并让其规约所产生的影响最小化。
对建议的配置对象而言,其维护方面的设计也支持在上线新的 kube-apiserver
时完成自动的迁移动作,即便可能因为当前的服务器集合存在不同的版本而可能造成抖动仍是如此。
对建议的配置对象的维护操作包括基于服务器建议的规约创建对象
(如果对象不存在的话)。反之,如果对象已经存在,维护操作的行为取决于是否
kube-apiserver
或者用户在控制对象。如果 kube-apiserver
在控制对象,
则服务器确保对象的规约与服务器所给的建议匹配,如果用户在控制对象,
对象的规约保持不变。
关于谁在控制对象这个问题,首先要看对象上的 apf.kubernetes.io/autoupdate-spec
注解。如果对象上存在这个注解,并且其取值为true
,则 kube-apiserver
在控制该对象。如果存在这个注解,并且其取值为false
,则用户在控制对象。
如果这两个条件都不满足,则需要进一步查看对象的 metadata.generation
。
如果该值为 1,则 kube-apiserver 控制对象,否则用户控制对象。
这些规则是在 1.22 发行版中引入的,而对 metadata.generation
的考量是为了便于从之前较简单的行为迁移过来。希望控制建议的配置对象的用户应该将对象的
apf.kubernetes.io/autoupdate-spec
注解设置为 false
。
对强制的或建议的配置对象的维护操作也包括确保对象上存在 apf.kubernetes.io/autoupdate-spec
这一注解,并且其取值准确地反映了是否 kube-apiserver 在控制着对象。
维护操作还包括删除那些既非强制又非建议的配置,同时注解配置为
apf.kubernetes.io/autoupdate-spec=true
的对象。
健康检查并发豁免
推荐配置没有为本地 kubelet 对 kube-apiserver 执行健康检查的请求进行任何特殊处理
——它们倾向于使用安全端口,但不提供凭据。
在推荐配置中,这些请求将分配 global-default
FlowSchema 和 global-default
优先级,
这样其他流量可以排除健康检查。
如果添加以下 FlowSchema,健康检查请求不受速率限制。
注意:进行此更改后,任何敌对方都可以发送与此 FlowSchema 匹配的任意数量的健康检查请求。
如果你有 Web 流量过滤器或类似的外部安全机制保护集群的 API 服务器免受常规网络流量的侵扰,
则可以配置规则,阻止所有来自集群外部的健康检查请求。
apiVersion: flowcontrol.apiserver.k8s.io/v1beta2
kind: FlowSchema
metadata:
name: health-for-strangers
spec:
matchingPrecedence: 1000
priorityLevelConfiguration:
name: exempt
rules:
- nonResourceRules:
- nonResourceURLs:
- "/healthz"
- "/livez"
- "/readyz"
verbs:
- "*"
subjects:
- kind: Group
group:
name: system:unauthenticated
问题诊断
启用了 APF 的 API 服务器,它每个 HTTP 响应都有两个额外的 HTTP 头:
X-Kubernetes-PF-FlowSchema-UID
和 X-Kubernetes-PF-PriorityLevel-UID
,
注意与请求匹配的 FlowSchema 和已分配的优先级。
如果请求用户没有查看这些对象的权限,则这些 HTTP 头中将不包含 API 对象的名称,
因此在调试时,你可以使用类似如下的命令:
kubectl get flowschemas -o custom-columns="uid:{metadata.uid},name:{metadata.name}"
kubectl get prioritylevelconfigurations -o custom-columns="uid:{metadata.uid},name:{metadata.name}"
来获取 UID 到 FlowSchema 的名称和 UID 到 PriorityLevelConfiguration 的名称的映射。
可观察性
指标
说明:在 Kubernetes v1.20 之前的版本中,标签 flow_schema
和 priority_level
的名称有时被写作 flowSchema
和 priorityLevel
,即存在不一致的情况。
如果你在运行 Kubernetes v1.19 或者更早版本,你需要参考你所使用的集群版本对应的文档。
当你开启了 APF 后,kube-apiserver 会暴露额外指标。
监视这些指标有助于判断你的配置是否不当地限制了重要流量,
或者发现可能会损害系统健康的,行为不良的工作负载。
apiserver_flowcontrol_dispatched_requests_total
是一个计数器向量,
记录开始执行的请求数量(自服务器启动以来的累积值),
由标签 flow_schema
(表示与请求匹配的 FlowSchema)和
priority_level
(表示分配给该请求的优先级)来区分。
apiserver_current_inqueue_requests
是一个表向量,
记录最近排队请求数量的高水位线,
由标签 request_kind
分组,标签的值为 mutating
或 readOnly
。
这些高水位线表示在最近一秒钟内看到的最大数字。
它们补充说明了老的表向量 apiserver_current_inflight_requests
(该量保存了最后一个窗口中,正在处理的请求数量的高水位线)。
apiserver_flowcontrol_read_vs_write_current_requests
是一个直方图向量,
在每个纳秒结束时记录请求数量的观察值,由标签 phase
(取值为 waiting
及 executing
)
和 request_kind
(取值为 mutating
及 readOnly
)区分。
每个观察到的值是一个介于 0 和 1 之间的比值,计算方式为请求数除以该请求数的对应限制
(等待的队列长度限制和执行所用的并发限制)。
apiserver_flowcontrol_current_inqueue_requests
是一个表向量,
记录包含排队中的(未执行)请求的瞬时数量,
由标签 priority_level
和 flow_schema
区分。
apiserver_flowcontrol_current_executing_requests
是一个表向量,
记录包含执行中(不在队列中等待)请求的瞬时数量,
由标签 priority_level
和 flow_schema
进一步区分。
apiserver_flowcontrol_request_concurrency_in_use
是一个规范向量,
包含占用座位的瞬时数量,由标签 priority_level
和 flow_schema
进一步区分。
apiserver_flowcontrol_priority_level_request_utilization
是一个直方图向量,
在每个纳秒结束时记录请求数量的观察值,
由标签 phase
(取值为 waiting
及 executing
)和 priority_level
区分。
每个观察到的值是一个介于 0 和 1 之间的比值,计算方式为请求数除以该请求数的对应限制
(等待的队列长度限制和执行所用的并发限制)。
apiserver_flowcontrol_priority_level_seat_utilization
是一个直方图向量,
在每个纳秒结束时记录某个优先级并发度限制利用率的观察值,由标签 priority_level
区分。
此利用率是一个分数:(占用的席位数)/(并发限制)。
此指标考虑了除 WATCH 之外的所有请求的所有执行阶段(包括写入结束时的正常延迟和额外延迟,
以覆盖相应的通知操作);对于 WATCH 请求,只考虑传递预先存在对象通知的初始阶段。
该向量中的每个直方图也带有 phase: executing
(等待阶段没有席位限制)的标签。
apiserver_flowcontrol_request_concurrency_limit
与
apiserver_flowcontrol_nominal_limit_seats
相同。在优先级之间引入并发度借用之前,
此字段始终等于 apiserver_flowcontrol_current_limit_seats
(它过去不作为一个独立的指标存在)。
apiserver_flowcontrol_nominal_limit_seats
是一个表向量,包含每个优先级的额定并发度限制,
指标值根据 API 服务器的总并发度限制和各优先级所配置的额定并发度份额计算得出。
apiserver_flowcontrol_lower_limit_seats
是一个表向量,包含每个优先级的动态并发度限制的下限。
apiserver_flowcontrol_upper_limit_seats
是一个表向量,包含每个优先级的动态并发度限制的上限。
apiserver_flowcontrol_demand_seats
是一个直方图向量,
统计每纳秒结束时每个优先级的(席位需求)/(额定并发限制)比率的观察值。
某优先级的席位需求是针对排队的请求和初始执行阶段的请求,在请求的初始和最终执行阶段占用的最大席位数之和。
apiserver_flowcontrol_demand_seats_high_watermark
是一个表向量,
为每个优先级包含了上一个并发度借用调整期间所观察到的最大席位需求。
apiserver_flowcontrol_demand_seats_average
是一个表向量,
为每个优先级包含了上一个并发度借用调整期间所观察到的时间加权平均席位需求。
apiserver_flowcontrol_demand_seats_stdev
是一个表向量,
为每个优先级包含了上一个并发度借用调整期间所观察到的席位需求的时间加权总标准偏差。
apiserver_flowcontrol_target_seats
是一个表向量,
包含每个优先级触发借用分配问题的并发度目标值。
apiserver_flowcontrol_seat_fair_frac
是一个表向量,
包含了上一个借用调整期间确定的公平分配比例。
apiserver_flowcontrol_current_limit_seats
是一个表向量,
包含每个优先级的上一次调整期间得出的动态并发限制。
apiserver_flowcontrol_request_execution_seconds
是一个直方图向量,
记录请求实际执行需要花费的时间,
由标签 flow_schema
(表示与请求匹配的 FlowSchema)和
priority_level
(表示分配给该请求的优先级)进一步区分。
apiserver_flowcontrol_watch_count_samples
是一个直方图向量,
记录给定写的相关活动 WATCH 请求数量,
由标签 flow_schema
和 priority_level
进一步区分。
apiserver_flowcontrol_work_estimated_seats
是一个直方图向量,
记录与估计席位(最初阶段和最后阶段的最多人数)相关联的请求数量,
由标签 flow_schema
和 priority_level
进一步区分。
apiserver_flowcontrol_request_dispatch_no_accommodation_total
是一个事件数量的计数器,这些事件在原则上可能导致请求被分派,
但由于并发度不足而没有被分派,
由标签 flow_schema
和 priority_level
进一步区分。
相关的事件类型是请求的到达和请求的完成。
调试端点
启用 APF 特性后,kube-apiserver 会在其 HTTP/HTTPS 端口提供以下路径:
/debug/api_priority_and_fairness/dump_priority_levels
——
所有优先级及其当前状态的列表。你可以这样获取:
kubectl get --raw /debug/api_priority_and_fairness/dump_priority_levels
输出类似于:
PriorityLevelName, ActiveQueues, IsIdle, IsQuiescing, WaitingRequests, ExecutingRequests, DispatchedRequests, RejectedRequests, TimedoutRequests, CancelledRequests
catch-all, 0, true, false, 0, 0, 1, 0, 0, 0
exempt, <none>, <none>, <none>, <none>, <none>, <none>, <none>, <none>, <none>
global-default, 0, true, false, 0, 0, 46, 0, 0, 0
leader-election, 0, true, false, 0, 0, 4, 0, 0, 0
node-high, 0, true, false, 0, 0, 34, 0, 0, 0
system, 0, true, false, 0, 0, 48, 0, 0, 0
workload-high, 0, true, false, 0, 0, 500, 0, 0, 0
workload-low, 0, true, false, 0, 0, 0, 0, 0, 0
/debug/api_priority_and_fairness/dump_queues
—— 所有队列及其当前状态的列表。
你可以这样获取:
kubectl get --raw /debug/api_priority_and_fairness/dump_queues
输出类似于:
PriorityLevelName, Index, PendingRequests, ExecutingRequests, VirtualStart,
workload-high, 0, 0, 0, 0.0000,
workload-high, 1, 0, 0, 0.0000,
workload-high, 2, 0, 0, 0.0000,
...
leader-election, 14, 0, 0, 0.0000,
leader-election, 15, 0, 0, 0.0000,
/debug/api_priority_and_fairness/dump_requests
—— 当前正在队列中等待的所有请求的列表。
你可以这样获取:
kubectl get --raw /debug/api_priority_and_fairness/dump_requests
输出类似于:
PriorityLevelName, FlowSchemaName, QueueIndex, RequestIndexInQueue, FlowDistingsher, ArriveTime,
exempt, <none>, <none>, <none>, <none>, <none>,
system, system-nodes, 12, 0, system:node:127.0.0.1, 2020-07-23T15:26:57.179170694Z,
针对每个优先级别,输出中还包含一条虚拟记录,对应豁免限制。
你可以使用以下命令获得更详细的清单:
kubectl get --raw '/debug/api_priority_and_fairness/dump_requests?includeRequestDetails=1'
输出类似于:
PriorityLevelName, FlowSchemaName, QueueIndex, RequestIndexInQueue, FlowDistingsher, ArriveTime, UserName, Verb, APIPath, Namespace, Name, APIVersion, Resource, SubResource,
system, system-nodes, 12, 0, system:node:127.0.0.1, 2020-07-23T15:31:03.583823404Z, system:node:127.0.0.1, create, /api/v1/namespaces/scaletest/configmaps,
system, system-nodes, 12, 1, system:node:127.0.0.1, 2020-07-23T15:31:03.594555947Z, system:node:127.0.0.1, create, /api/v1/namespaces/scaletest/configmaps,
调试日志生成行为
在 -v=3
或更详细的情况下,服务器会为每个请求输出一行 httplog,它包括以下属性。
apf_fs
:请求被分类到的 FlowSchema 的名称。apf_pl
:该 FlowSchema 的优先级名称。apf_iseats
:为请求执行的初始(正常)阶段确定的席位数量。apf_fseats
:为请求的最后执行阶段(考虑关联的 WATCH 通知)确定的席位数量。apf_additionalLatency
:请求执行最后阶段的持续时间。
在更高级别的精细度下,将有日志行揭示 APF 如何处理请求的详细信息,主要用于调试目的。
APF 将以下两个头添加到每个 HTTP 响应消息中。
X-Kubernetes-PF-FlowSchema-UID
保存相应请求被分类到的 FlowSchema 对象的 UID。X-Kubernetes-PF-PriorityLevel-UID
保存与该 FlowSchema 关联的 PriorityLevelConfiguration 对象的 UID。
接下来
有关 API 优先级和公平性的设计细节的背景信息,
请参阅增强提案。
你可以通过 SIG API Machinery
或特性的 Slack 频道提出建议和特性请求。
10 - 安装扩展(Addons)
说明:
本部分链接到提供 Kubernetes 所需功能的第三方项目。Kubernetes 项目作者不负责这些项目。此页面遵循
CNCF 网站指南,按字母顺序列出项目。要将项目添加到此列表中,请在提交更改之前阅读
内容指南。
Add-ons 扩展了 Kubernetes 的功能。
本文列举了一些可用的 add-ons 以及到它们各自安装说明的链接。该列表并不试图详尽无遗。
联网和网络策略
- ACI 通过 Cisco ACI 提供集成的容器网络和安全网络。
- Antrea 在第 3/4 层执行操作,为 Kubernetes
提供网络连接和安全服务。Antrea 利用 Open vSwitch 作为网络的数据面。
Antrea 是一个沙箱级的 CNCF 项目。
- Calico 是一个联网和网络策略供应商。
Calico 支持一套灵活的网络选项,因此你可以根据自己的情况选择最有效的选项,包括非覆盖和覆盖网络,带或不带 BGP。
Calico 使用相同的引擎为主机、Pod 和(如果使用 Istio 和 Envoy)应用程序在服务网格层执行网络策略。
- Canal 结合 Flannel 和 Calico,提供联网和网络策略。
- Cilium 是一种网络、可观察性和安全解决方案,具有基于 eBPF 的数据平面。
Cilium 提供了简单的 3 层扁平网络,
能够以原生路由(routing)和覆盖/封装(overlay/encapsulation)模式跨越多个集群,
并且可以使用与网络寻址分离的基于身份的安全模型在 L3 至 L7 上实施网络策略。
Cilium 可以作为 kube-proxy 的替代品;它还提供额外的、可选的可观察性和安全功能。
Cilium 是一个孵化级别的 CNCF 项目。
- CNI-Genie 使 Kubernetes 无缝连接到
Calico、Canal、Flannel 或 Weave 等其中一种 CNI 插件。
CNI-Genie 是一个沙箱级的 CNCF 项目。
- Contiv 为各种用例和丰富的策略框架提供可配置的网络
(带 BGP 的原生 L3、带 vxlan 的覆盖、标准 L2 和 Cisco-SDN/ACI)。
Contiv 项目完全开源。
其安装程序 提供了基于 kubeadm 和非 kubeadm 的安装选项。
- Contrail 基于
Tungsten Fabric,是一个开源的多云网络虚拟化和策略管理平台。
Contrail 和 Tungsten Fabric 与业务流程系统(例如 Kubernetes、OpenShift、OpenStack 和 Mesos)集成在一起,
为虚拟机、容器或 Pod 以及裸机工作负载提供了隔离模式。
- Flannel
是一个可以用于 Kubernetes 的 overlay 网络提供者。
- Knitter 是在一个 Kubernetes Pod 中支持多个网络接口的插件。
- Multus 是一个多插件,
可在 Kubernetes 中提供多种网络支持,以支持所有 CNI 插件(例如 Calico、Cilium、Contiv、Flannel),
而且包含了在 Kubernetes 中基于 SRIOV、DPDK、OVS-DPDK 和 VPP 的工作负载。
- OVN-Kubernetes 是一个 Kubernetes 网络驱动,
基于 OVN(Open Virtual Network)实现,是从 Open vSwitch (OVS)
项目衍生出来的虚拟网络实现。OVN-Kubernetes 为 Kubernetes 提供基于覆盖网络的网络实现,
包括一个基于 OVS 实现的负载均衡器和网络策略。
- Nodus 是一个基于 OVN 的 CNI 控制器插件,
提供基于云原生的服务功能链 (SFC)。
- NSX-T 容器插件(NCP)
提供了 VMware NSX-T 与容器协调器(例如 Kubernetes)之间的集成,以及 NSX-T 与基于容器的
CaaS / PaaS 平台(例如关键容器服务(PKS)和 OpenShift)之间的集成。
- Nuage
是一个 SDN 平台,可在 Kubernetes Pods 和非 Kubernetes 环境之间提供基于策略的联网,并具有可视化和安全监控。
- Romana 是一个 Pod 网络的第三层解决方案,并支持
NetworkPolicy API。
- Weave Net
提供在网络分组两端参与工作的联网和网络策略,并且不需要额外的数据库。
服务发现
- CoreDNS 是一种灵活的,可扩展的 DNS 服务器,可以
安装为集群内的 Pod 提供 DNS 服务。
可视化管理
基础设施
遗留 Add-ons
还有一些其它 add-ons 归档在已废弃的 cluster/addons 路径中。
维护完善的 add-ons 应该被链接到这里。欢迎提出 PRs!