現在表示しているのは、次のバージョン向けのドキュメントです。Kubernetesバージョン: v1.26
Kubernetes v1.26 のドキュメントは積極的にメンテナンスされていません。現在表示されているバージョンはスナップショットです。最新のドキュメントはこちらです: 最新バージョン
Serviceのデバッグ
新規にKubernetesをインストールした環境でかなり頻繁に発生する問題は、Serviceが適切に機能しないというものです。Deployment(または他のワークロードコントローラー)を通じてPodを実行し、サービスを作成したにもかかわらず、アクセスしようとしても応答がありません。何が問題になっているのかを理解するのに、このドキュメントがきっと役立つでしょう。
Pod内でコマンドを実行する
ここでの多くのステップでは、クラスターで実行されているPodが見ているものを確認する必要があります。これを行う最も簡単な方法は、インタラクティブなalpineのPodを実行することです。
kubectl run -it --rm --restart=Never alpine --image=alpine sh
使用したい実行中のPodがすでにある場合は、以下のようにしてそのPod内でコマンドを実行できます。
kubectl exec <POD-NAME> -c <CONTAINER-NAME> -- <COMMAND>
セットアップ
このドキュメントのウォークスルーのために、いくつかのPodを実行しましょう。おそらくあなた自身のServiceをデバッグしているため、あなた自身の詳細に置き換えることもできますし、これに沿って2番目のデータポイントを取得することもできます。
kubectl create deployment hostnames --image=registry.k8s.io/serve_hostname
deployment.apps/hostnames created
kubectl
コマンドは作成、変更されたリソースのタイプと名前を出力するため、この後のコマンドで使用することもできます。
Deploymentを3つのレプリカにスケールさせてみましょう。
kubectl scale deployment hostnames --replicas=3
deployment.apps/hostnames scaled
これは、次のYAMLでDeploymentを開始した場合と同じです。
apiVersion: apps/v1
kind: Deployment
metadata:
name: hostnames
labels:
app: hostnames
spec:
selector:
matchLabels:
app: hostnames
replicas: 3
template:
metadata:
labels:
app: hostnames
spec:
containers:
- name: hostnames
image: registry.k8s.io/serve_hostname
"app"ラベルはkubectl create deployment
によって、Deploymentの名前に自動的にセットされます。
Podが実行されていることを確認できます。
kubectl get pods -l app=hostnames
NAME READY STATUS RESTARTS AGE
hostnames-632524106-bbpiw 1/1 Running 0 2m
hostnames-632524106-ly40y 1/1 Running 0 2m
hostnames-632524106-tlaok 1/1 Running 0 2m
Podが機能していることも確認できます。Pod IP アドレスリストを取得し、直接テストできます。
kubectl get pods -l app=hostnames \
-o go-template='{{range .items}}{{.status.podIP}}{{"\n"}}{{end}}'
10.244.0.5
10.244.0.6
10.244.0.7
このウォークスルーに使用されるサンプルコンテナは、ポート9376でHTTPを介して独自のホスト名を提供するだけですが、独自のアプリをデバッグする場合は、Podがリッスンしているポート番号を使用する必要があります。
Pod内から実行します。
for ep in 10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376; do
wget -qO- $ep
done
次のように表示されます。
hostnames-632524106-bbpiw
hostnames-632524106-ly40y
hostnames-632524106-tlaok
この時点で期待通りの応答が得られない場合、Podが正常でないか、想定しているポートでリッスンしていない可能性があります。なにが起きているかを確認するためにkubectl logs
が役立ちます。Podに直接に入りデバッグする場合はkubectl exec
が必要になります。
これまでにすべての計画が完了していると想定すると、Serviceが機能しない理由を調査することができます。
Serviceは存在するか?
賢明な読者は、Serviceをまだ実際に作成していないことにお気付きかと思いますが、これは意図的です。これは時々忘れられるステップであり、最初に確認すべきことです。
存在しないServiceにアクセスしようとするとどうなるでしょうか?このServiceを名前で利用する別のPodがあると仮定すると、次のような結果が得られます。
wget -O- hostnames
Resolving hostnames (hostnames)... failed: Name or service not known.
wget: unable to resolve host address 'hostnames'
最初に確認するのは、そのServiceが実際に存在するかどうかです。
kubectl get svc hostnames
No resources found.
Error from server (NotFound): services "hostnames" not found
Serviceを作成しましょう。前と同様に、これはウォークスルー用です。ご自身のServiceの詳細を使用することもできます。
kubectl expose deployment hostnames --port=80 --target-port=9376
service/hostnames exposed
そして、念のため内容を確認します。
kubectl get svc hostnames
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hostnames ClusterIP 10.0.1.175 <none> 80/TCP 5s
これで、Serviceが存在することがわかりました。
前と同様に、これは次のようなYAMLでServiceを開始した場合と同じです。
apiVersion: v1
kind: Service
metadata:
name: hostnames
spec:
selector:
app: hostnames
ports:
- name: default
protocol: TCP
port: 80
targetPort: 9376
構成の全範囲をハイライトするため、ここで作成したServiceはPodとは異なるポート番号を使用します。多くの実際のServiceでは、これらのポートは同じになる場合があります。
サービスはDNS名によって機能しているか?
クライアントがサービスを使用する最も一般的な方法の1つは、DNS名を使用することです。同じNamespaceのPodから次のコマンドを実行してください。
nslookup hostnames
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: hostnames
Address 1: 10.0.1.175 hostnames.default.svc.cluster.local
これが失敗した場合、おそらくPodとServiceが異なるNamespaceにあるため、ネームスペースで修飾された名前を試してください。(Podの中からもう一度)
nslookup hostnames.default
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: hostnames.default
Address 1: 10.0.1.175 hostnames.default.svc.cluster.local
これが機能する場合、クロスネームスペース名を使用するようにアプリケーションを調整するか、同じNamespaceでアプリとServiceを実行する必要があります。これでも失敗する場合は、完全修飾名を試してください。
nslookup hostnames.default.svc.cluster.local
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: hostnames.default.svc.cluster.local
Address 1: 10.0.1.175 hostnames.default.svc.cluster.local
ここでのサフィックス"default.svc.cluster.local"に注意してください。"default"は、操作しているNamespaceです。"svc"は、これがServiceであることを示します。"cluster.local"はクラスタードメインであり、あなたのクラスターでは異なる場合があります。
クラスター内のノードからも試すこともできます。
nslookup hostnames.default.svc.cluster.local 10.0.0.10
Server: 10.0.0.10
Address: 10.0.0.10#53
Name: hostnames.default.svc.cluster.local
Address: 10.0.1.175
完全修飾名では検索できるのに、相対名ではできない場合、Podの/etc/resolv.conf
ファイルが正しいことを確認する必要があります。Pod内から実行します。
cat /etc/resolv.conf
次のように表示されます。
nameserver 10.0.0.10
search default.svc.cluster.local svc.cluster.local cluster.local example.com
options ndots:5
nameserver行はクラスターのDNS Serviceを示さなければなりません。これは、--cluster-dns
フラグでkubelet
に渡されます。
search
行には、Service
名を見つけるための適切なサフィックスを含める必要があります。この場合、ローカルのNamespace
でService
を見つけるためのサフィックス(default.svc.cluster.local
)、すべてのNamespaces
でService
を見つけるためのサフィックス(svc.cluster.local
)、およびクラスターのサフィックス(cluster.local
)です。インストール方法によっては、その後に追加のレコードがある場合があります(合計6つまで)。クラスターのサフィックスは、--cluster-domain
フラグを使用してkubelet
に渡されます。このドキュメントではそれが"cluster.local"であると仮定していますが、あなたのクラスターでは異なる場合があります。その場合は、上記のすべてのコマンドでクラスターのサフィックスを変更する必要があります。
options
行では、DNSクライアントライブラリーが検索パスをまったく考慮しないようにndots
を十分に高く設定する必要があります。Kubernetesはデフォルトでこれを5に設定します。これは、生成されるすべてのDNS名をカバーするのに十分な大きさです。
DNS名で機能するServiceはあるか?
上記がまだ失敗する場合、DNSルックアップがServiceに対して機能していません。一歩離れて、他の何が機能していないかを確認しましょう。KubernetesマスターのServiceは常に機能するはずです。Pod内から実行します。
nslookup kubernetes.default
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: kubernetes.default
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
これが失敗する場合は、このドキュメントのkube-proxyセクションを参照するか、このドキュメントの先頭に戻って最初からやり直してください。ただし、あなた自身のServiceをデバッグするのではなく、DNSサービスをデバッグします。
ServiceはIPでは機能するか?
DNSサービスが正しく動作できると仮定すると、次にテストするのはIPによってServiceが動作しているかどうかです。上述のkubectl get
で確認できるIPに、クラスター内のPodからアクセスします。
for i in $(seq 1 3); do
wget -qO- 10.0.1.175:80
done
次のように表示されます。
hostnames-0uton
hostnames-bvc05
hostnames-yp2kp
Serviceが機能している場合は、正しい応答が得られるはずです。そうでない場合、おかしい可能性のあるものがいくつかあるため、続けましょう。
Serviceは正しく定義されているか?
馬鹿げているように聞こえるかもしれませんが、Serviceが正しく定義されPodのポートとマッチすることを二度、三度と確認すべきです。Serviceを読み返して確認しましょう。
kubectl get service hostnames -o json
{
"kind": "Service",
"apiVersion": "v1",
"metadata": {
"name": "hostnames",
"namespace": "default",
"uid": "428c8b6c-24bc-11e5-936d-42010af0a9bc",
"resourceVersion": "347189",
"creationTimestamp": "2015-07-07T15:24:29Z",
"labels": {
"app": "hostnames"
}
},
"spec": {
"ports": [
{
"name": "default",
"protocol": "TCP",
"port": 80,
"targetPort": 9376,
"nodePort": 0
}
],
"selector": {
"app": "hostnames"
},
"clusterIP": "10.0.1.175",
"type": "ClusterIP",
"sessionAffinity": "None"
},
"status": {
"loadBalancer": {}
}
}
- アクセスしようとしているServiceポートは
spec.ports[]
のリストのなかに定義されていますか? targetPort
はPodに対して適切ですか(いくつかのPodはServiceとは異なるポートを使用します)?targetPort
を数値で定義しようとしている場合、それは数値(9376)、文字列"9376"のどちらですか?targetPort
を名前で定義しようとしている場合、Podは同じ名前でポートを公開していますか?- ポートの
protocol
はPodに適切ですか?
ServiceにEndpointsがあるか?
ここまで来たということは、Serviceは正しく定義され、DNSによって名前解決できることが確認できているでしょう。ここでは、実行したPodがServiceによって実際に選択されていることを確認しましょう。
以前に、Podが実行されていることを確認しました。再確認しましょう。
kubectl get pods -l app=hostnames
NAME READY STATUS RESTARTS AGE
hostnames-632524106-bbpiw 1/1 Running 0 1h
hostnames-632524106-ly40y 1/1 Running 0 1h
hostnames-632524106-tlaok 1/1 Running 0 1h
-l app=hostnames
引数はラベルセレクターで、ちょうど私たちのService
に定義されているものと同じです。
"AGE"列は、これらのPodが約1時間前のものであることを示しており、それらが正常に実行され、クラッシュしていないことを意味します。
"RESTARTS"列は、これらのポッドが頻繁にクラッシュしたり、再起動されていないことを示しています。頻繁に再起動すると、断続的な接続性の問題が発生する可能性があります。再起動回数が多い場合は、ポッドをデバッグするを参照してください。
Kubernetesシステム内には、すべてのServiceのセレクターを評価し、結果をEndpointsオブジェクトに保存するコントロールループがあります。
kubectl get endpoints hostnames
NAME ENDPOINTS
hostnames 10.244.0.5:9376,10.244.0.6:9376,10.244.0.7:9376
これにより、EndpointsコントローラーがServiceの正しいPodを見つけていることを確認できます。ENDPOINTS
列が<none>
の場合、Serviceのspec.selector
フィールドが実際にPodのmetadata.labels
値を選択していることを確認する必要があります。よくある間違いは、タイプミスやその他のエラー、たとえばDeployment作成にもkubectl run
が使われた1.18以前のバージョンのように、Serviceがapp=hostnames
を選択しているのにDeploymentがrun=hostnames
を指定していることです。
Podは機能しているか?
この時点で、Serviceが存在し、Podを選択していることがわかります。このウォークスルーの最初に、Pod自体を確認しました。Podが実際に機能していることを確認しましょう。Serviceメカニズムをバイパスして、上記EndpointsにリストされているPodに直接アクセスすることができます。
Pod内から実行します。
for ep in 10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376; do
wget -qO- $ep
done
次のように表示されます。
hostnames-632524106-bbpiw
hostnames-632524106-ly40y
hostnames-632524106-tlaok
Endpointsリスト内の各Podは、それぞれの自身のホスト名を返すはずです。そうならない(または、あなた自身のPodの正しい振る舞いにならない)場合は、そこで何が起こっているのかを調査する必要があります。
kube-proxyは機能しているか?
ここに到達したのなら、Serviceは実行され、Endpointsがあり、Podが実際にサービスを提供しています。この時点で、Serviceのプロキシーメカニズム全体が疑わしいです。ひとつひとつ確認しましょう。
Serviceのデフォルト実装、およびほとんどのクラスターで使用されるものは、kube-proxyです。kube-proxyはそれぞれのノードで実行され、Serviceの抽象化を提供するための小さなメカニズムセットの1つを構成するプログラムです。クラスターがkube-proxyを使用しない場合、以下のセクションは適用されず、使用しているServiceの実装を調査する必要があります。
kube-proxyは実行されているか?
kube-proxy
がノード上で実行されていることを確認しましょう。ノードで実行されていれば、以下のような結果が得られるはずです。
ps auxw | grep kube-proxy
root 4194 0.4 0.1 101864 17696 ? Sl Jul04 25:43 /usr/local/bin/kube-proxy --master=https://kubernetes-master --kubeconfig=/var/lib/kube-proxy/kubeconfig --v=2
次に、マスターとの接続など、明らかな失敗をしていないことを確認します。これを行うには、ログを確認する必要があります。ログへのアクセス方法は、ノードのOSに依存します。一部のOSでは/var/log/kube-proxy.logのようなファイルですが、他のOSではjournalctl
を使用してログにアクセスします。次のように表示されます。
I1027 22:14:53.995134 5063 server.go:200] Running in resource-only container "/kube-proxy"
I1027 22:14:53.998163 5063 server.go:247] Using iptables Proxier.
I1027 22:14:53.999055 5063 server.go:255] Tearing down userspace rules. Errors here are acceptable.
I1027 22:14:54.038140 5063 proxier.go:352] Setting endpoints for "kube-system/kube-dns:dns-tcp" to [10.244.1.3:53]
I1027 22:14:54.038164 5063 proxier.go:352] Setting endpoints for "kube-system/kube-dns:dns" to [10.244.1.3:53]
I1027 22:14:54.038209 5063 proxier.go:352] Setting endpoints for "default/kubernetes:https" to [10.240.0.2:443]
I1027 22:14:54.038238 5063 proxier.go:429] Not syncing iptables until Services and Endpoints have been received from master
I1027 22:14:54.040048 5063 proxier.go:294] Adding new service "default/kubernetes:https" at 10.0.0.1:443/TCP
I1027 22:14:54.040154 5063 proxier.go:294] Adding new service "kube-system/kube-dns:dns" at 10.0.0.10:53/UDP
I1027 22:14:54.040223 5063 proxier.go:294] Adding new service "kube-system/kube-dns:dns-tcp" at 10.0.0.10:53/TCP
マスターに接続できないことに関するエラーメッセージが表示された場合、ノードの設定とインストール手順をダブルチェックする必要があります。
kube-proxy
が正しく実行できない理由の可能性の1つは、必須のconntrack
バイナリが見つからないことです。これは、例えばKubernetesをスクラッチからインストールするなど、クラスターのインストール方法に依存して、一部のLinuxシステムで発生する場合があります。これが該当する場合は、conntrack
パッケージを手動でインストール(例: Ubuntuではsudo apt install conntrack
)する必要があり、その後に再試行する必要があります。
kube-proxyは、いくつかのモードのいずれかで実行できます。上記のログのUsing iptables Proxier
という行は、kube-proxyが「iptables」モードで実行されていることを示しています。最も一般的な他のモードは「ipvs」です。古い「ユーザースペース」モードは、主にこれらに置き換えられました。
Iptables mode
「iptables」モードでは、ノードに次のようなものが表示されます。
iptables-save | grep hostnames
-A KUBE-SEP-57KPRZ3JQVENLNBR -s 10.244.3.6/32 -m comment --comment "default/hostnames:" -j MARK --set-xmark 0x00004000/0x00004000
-A KUBE-SEP-57KPRZ3JQVENLNBR -p tcp -m comment --comment "default/hostnames:" -m tcp -j DNAT --to-destination 10.244.3.6:9376
-A KUBE-SEP-WNBA2IHDGP2BOBGZ -s 10.244.1.7/32 -m comment --comment "default/hostnames:" -j MARK --set-xmark 0x00004000/0x00004000
-A KUBE-SEP-WNBA2IHDGP2BOBGZ -p tcp -m comment --comment "default/hostnames:" -m tcp -j DNAT --to-destination 10.244.1.7:9376
-A KUBE-SEP-X3P2623AGDH6CDF3 -s 10.244.2.3/32 -m comment --comment "default/hostnames:" -j MARK --set-xmark 0x00004000/0x00004000
-A KUBE-SEP-X3P2623AGDH6CDF3 -p tcp -m comment --comment "default/hostnames:" -m tcp -j DNAT --to-destination 10.244.2.3:9376
-A KUBE-SERVICES -d 10.0.1.175/32 -p tcp -m comment --comment "default/hostnames: cluster IP" -m tcp --dport 80 -j KUBE-SVC-NWV5X2332I4OT4T3
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -m statistic --mode random --probability 0.33332999982 -j KUBE-SEP-WNBA2IHDGP2BOBGZ
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-X3P2623AGDH6CDF3
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -j KUBE-SEP-57KPRZ3JQVENLNBR
各サービスのポートごとに、KUBE-SERVICES
に1つのルールと1つのKUBE-SVC- <hash>
チェーンが必要です。Podエンドポイントごとに、そのKUBE-SVC- <hash>
に少数のルールがあり、少数のルールが含まれる1つのKUBE-SEP- <hash>
チェーンがあるはずです。正確なルールは、正確な構成(NodePortとLoadBalancerを含む)に基づいて異なります。
IPVS mode
「ipvs」モードでは、ノードに次のようなものが表示されます。
ipvsadm -ln
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
...
TCP 10.0.1.175:80 rr
-> 10.244.0.5:9376 Masq 1 0 0
-> 10.244.0.6:9376 Masq 1 0 0
-> 10.244.0.7:9376 Masq 1 0 0
...
各Serviceの各ポートに加えて、NodePort、External IP、およびLoad Balancer IPに対して、kube-proxyは仮想サーバーを作成します。Pod endpointごとに、対応する実サーバーが作成されます。この例では、サービスhostnames(10.0.1.175:80
)は3つのendpoints(10.244.0.5:9376
、10.244.0.6:9376
、10.244.0.7:9376
)を持っています。
IPVSプロキシーは、各Serviceアドレス(Cluster IP、External IP、NodePort IP、Load Balancer IPなど)毎の仮想サーバーと、Serviceのエンドポイントが存在する場合に対応する実サーバーを作成します。この例では、hostnames Service(10.0.1.175:80
)は3つのエンドポイント(10.244.0.5:9376
、10.244.0.6:9376
、10.244.0.7:9376
)を持ち、上と似た結果が得られるはずです。
Userspace mode
まれに、「userspace」モードを使用している場合があります。
ノードから実行します。
iptables-save | grep hostnames
-A KUBE-PORTALS-CONTAINER -d 10.0.1.175/32 -p tcp -m comment --comment "default/hostnames:default" -m tcp --dport 80 -j REDIRECT --to-ports 48577
-A KUBE-PORTALS-HOST -d 10.0.1.175/32 -p tcp -m comment --comment "default/hostnames:default" -m tcp --dport 80 -j DNAT --to-destination 10.240.115.247:48577
サービスの各ポートには2つのルールが必要です(この例では1つだけ)-「KUBE-PORTALS-CONTAINER」と「KUBE-PORTALS-HOST」です。
「userspace」モードを使用する必要はほとんどないので、ここでこれ以上時間を費やすことはありません。
kube-proxyはプロキシしているか?
上記のいずれかが発生したと想定して、いずれかのノードからIPでサービスにアクセスをしています。
curl 10.0.1.175:80
hostnames-632524106-bbpiw
もしこれが失敗し、あなたがuserspaceプロキシーを使用している場合、プロキシーへの直接アクセスを試してみてください。もしiptablesプロキシーを使用している場合、このセクションはスキップしてください。
上記のiptables-save
の出力を振り返り、kube-proxy
がServiceに使用しているポート番号を抽出します。上記の例では"48577"です。このポートに接続してください。
curl localhost:48577
hostnames-632524106-tlaok
もしまだ失敗する場合は、kube-proxy
ログで次のような特定の行を探してください。
Setting endpoints for default/hostnames:default to [10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376]
これらが表示されない場合は、-v
フラグを4に設定してkube-proxy
を再起動してから、再度ログを確認してください。
エッジケース: PodがService IP経由で自身に到達できない
これはありそうに聞こえないかもしれませんが、実際には起こり、動作するはずです。これはネットワークが"hairpin"トラフィック用に適切に設定されていない場合、通常はkube-proxy
がiptables
モードで実行され、Podがブリッジネットワークに接続されている場合に発生します。Kubelet
はhairpin-mode
フラグを公開します。これにより、Serviceのエンドポイントが自身のServiceのVIPにアクセスしようとした場合に、自身への負荷分散を可能にします。hairpin-mode
フラグはhairpin-veth
またはpromiscuous-bridge
に設定する必要があります。
この問題をトラブルシューティングする一般的な手順は次のとおりです。
hairpin-mode
がhairpin-veth
またはpromiscuous-bridge
に設定されていることを確認します。次のような表示がされるはずです。この例では、hairpin-mode
はpromiscuous-bridge
に設定されています。
ps auxw | grep kubelet
root 3392 1.1 0.8 186804 65208 ? Sl 00:51 11:11 /usr/local/bin/kubelet --enable-debugging-handlers=true --config=/etc/kubernetes/manifests --allow-privileged=True --v=4 --cluster-dns=10.0.0.10 --cluster-domain=cluster.local --configure-cbr0=true --cgroup-root=/ --system-cgroups=/system --hairpin-mode=promiscuous-bridge --runtime-cgroups=/docker-daemon --kubelet-cgroups=/kubelet --babysit-daemons=true --max-pods=110 --serialize-image-pulls=false --outofdisk-transition-frequency=0
- 実際に使われている
hairpin-mode
を確認します。これを行うには、kubeletログを確認する必要があります。ログへのアクセス方法は、ノードのOSによって異なります。一部のOSでは/var/log/kubelet.logなどのファイルですが、他のOSではjournalctl
を使用してログにアクセスします。互換性のために、実際に使われているhairpin-mode
が--hairpin-mode
フラグと一致しない場合があることに注意してください。kubelet.logにキーワードhairpin
を含むログ行があるかどうかを確認してください。実際に使われているhairpin-mode
を示す以下のようなログ行があるはずです。
I0629 00:51:43.648698 3252 kubelet.go:380] Hairpin mode set to "promiscuous-bridge"
- 実際に使われている
hairpin-mode
がhairpin-veth
の場合、Kubelet
にノードの/sys
で操作する権限があることを確認します。すべてが正常に機能している場合、次のようなものが表示されます。
for intf in /sys/devices/virtual/net/cbr0/brif/*; do cat $intf/hairpin_mode; done
1
1
1
1
実際に使われているhairpin-mode
がpromiscuous-bridge
の場合、Kubelet
にノード上のLinuxブリッジを操作する権限があることを確認してください。cbr0
ブリッジが使用され適切に構成されている場合、以下が表示されます。
ifconfig cbr0 |grep PROMISC
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1460 Metric:1
- 上記のいずれも解決しない場合、助けを求めてください。
助けを求める
ここまでたどり着いたということは、とてもおかしなことが起こっています。Serviceは実行中で、Endpointsがあり、Podは実際にサービスを提供しています。DNSは動作していて、kube-proxy
も誤動作していないようです。それでも、あなたのServiceは機能していません。おそらく私たちにお知らせ頂いた方がよいでしょう。調査をお手伝いします!
Slack、ForumまたはGitHubでお問い合わせください。
次の項目
詳細については、トラブルシューティングドキュメントをご覧ください。